
283

6Chapter

Basic User-Defined
Functions

In Chapter 4, we learned the importance of good program design. The basic tech-
nique that we employed was top-down design. In top-down design, you start with
a statement of the problem to be solved and the required inputs and outputs. Next,
you describe the algorithm to be implemented by the program in broad outline, and
you apply decomposition to break down the algorithm into logical subdivisions called
sub-tasks. Then you break down each sub-task until you have many small pieces, each
of which does a simple, clearly understandable job. Finally, you turn the individual
pieces into MATLAB code.

Although we have followed this design process in our examples, the results have
been somewhat restricted because we have had to combine the final MATLAB code gen-
erated for each sub-task into a single large program. There has been no way to code, ver-
ify, and test each sub-task independently before combining them into the final program.

Fortunately, MATLAB has a special mechanism designed to make sub-tasks easy
to develop and debug independently before building the final program. It is possible
to code each sub-task as a separate function, and each function can be tested and
debugged independently of all of the other sub-tasks in the program.

Well-designed functions enormously reduce the effort required on a large pro-
gramming project. Their benefits include:

1. Independent testing of sub-tasks. Each sub-task can be written as an
independent unit. The sub-task can be tested separately to ensure that it
performs properly by itself before combining it into the larger program.
This step is known as unit testing. It eliminates a major source of prob-
lems before the final program is built.

2. Reusable code. In many cases, the same basic sub-task is needed in many
parts of a program. For example, it may be necessary to sort a list of val-
ues into ascending order many different times within a program, or even in
other programs. It is possible to design, code, test, and debug a single func-
tion to do the sorting, and then to reuse that function whenever sorting is

30394_ch06_ptg01.indd 283 18/12/18 3:21 pm

284 | Chapter 6 Basic User-Defined Functions

required. This reusable code has two major advantages: it reduces the total
programming effort required, and it simplifies debugging, since the sorting
function only needs to be debugged once.

3. Isolation from unintended side effects. Functions receive input data
from the program that invokes them through a list of variables called an
input argument list, and return results to the program through an
output argument list. Each function has its own workspace with its own
variables, independent of all other functions and of the calling program. The
only variables in the calling program that can be seen by the function are those in
the input argument list, and the only variables in the function that can be seen by
the calling program are those in the output argument list. This is very important,
since accidental programming mistakes within a function can only affect the
variables within the function in which the mistake occurred.

Once a large program is written and released, it has to be maintained. Program
maintenance involves fixing bugs and modifying the program to handle new and
unforeseen circumstances. The engineer who modifies a program during mainte-
nance is often not the person who originally wrote it. In poorly written programs, it
is common for the engineer modifying the program to make a change in one region
of the code, and to have that change cause unintended side effects in a totally differ-
ent part of the program. This happens because variable names are reused in different
portions of the program. When the engineer changes the values left behind in some
of the variables, those values are accidentally picked up and used in other portions
of the code.

The use of well-designed functions minimizes this problem by data hiding. The
variables in the main program are not visible to the function (except for those in the
input argument list), and the variables in the main program cannot be accidentally
modified by anything occurring in the function. Therefore, mistakes or changes in the
function’s variables cannot accidentally cause unintended side effects in other parts
of the program.

Good Programming Practice

Break large program tasks into functions whenever practical to achieve the impor-
tant benefits of independent component testing, reusability, and isolation from unde-
sired side effects.

6.1 Introduction to MATLAB Functions

All of the M-files that we have seen so far have been script files. Script files are
just collections of MATLAB statements that are stored in a file. When a script file
is executed, the result is the same as it would be if all of the commands had been
typed directly into the Command Window. Script files share the Command Window’s

30394_ch06_ptg01.indd 284 18/12/18 3:21 pm

6.1 Introduction to MATLAB Functions | 285

workspace, so any variables that were defined before the script file starts are visible
to the script file, and any variables created by the script file remain in the workspace
after the script file finishes executing. A script file has no input arguments and returns
no results, but script files can communicate with other script files through the data
left behind in the workspace.

In contrast, a MATLAB function is a special type of M-file that runs in its own
independent workspace. It receives input data through an input argument list, and
returns results to the caller through an output argument list. The general form of a
MATLAB function is

function [outarg1, outarg2, ...] = fname(inarg1, inarg2, ...)
% H1 comment line
% Other comment lines
...
(Executable code)
...
(return)
(end)

The function statement marks the beginning of the function. It specifies the name
of the function and the input and output argument lists. The input argument list
appears in parentheses after the function name, and the output argument list appears
in brackets to the left of the equal sign. (If there is only one output argument, the
brackets can be dropped.)

Each ordinary MATLAB function should be placed in a file with the same name
(including capitalization) as the function, and the file extension “.m”. For example,
if a function is named My_fun, then that function should be placed in a file named
My_fun.m.

The input argument list is a list of names representing values that will be passed
from the caller to the function. These names are called dummy arguments. They are
just placeholders for actual values that are passed from the caller when the function
is invoked. Similarly, the output argument list contains a list of dummy arguments
that are placeholders for the values returned to the caller when the function finishes
executing.

A function is invoked by naming it in an expression together with a list of
actual arguments. A function can be invoked by typing its name directly in the
Command Window, or by including it in a script file or another function. The name
in the calling program must exactly match the function name (including capitaliza-
tion).1 When the function is invoked, the value of the first actual argument is used
in place of the first dummy argument, and so forth for each other actual argument/
dummy argument pair.

1For example, suppose that a function has been declared with the name My_Fun, and placed in file My_
Fun.m. Then this function should be called with the name My_Fun, not my_fun or MY_FUN. If the
capitalization fails to match, MATLAB will look for the most similar function name and ask if you want
to run that function.

30394_ch06_ptg01.indd 285 18/12/18 3:21 pm

286 | Chapter 6 Basic User-Defined Functions

Execution begins at the top of the function and ends when a return statement, an
end statement, or the end of the function is reached. Because execution stops at the end
of a function, the return statement is not actually required in most functions and is
rarely used. Each item in the output argument list must appear on the left side of at least
one assignment statement in the function. When the function returns, the values stored in
the output argument list are returned to the caller and may be used in further calculations.

The use of an end statement to terminate a function is a new feature as of MAT-
LAB 7.0. It is optional unless a file includes nested functions, which we describe
in Chapter 7. We will not use the end statement to terminate a function unless it is
actually needed, so you will rarely see it used in this book.

The initial comment lines in a function serve a special purpose. The first com-
ment line after the function statement is called the H1 comment line. It should
always contain a one-line summary of the purpose of the function. The special sig-
nificance of this line is that it is searched and displayed by the lookfor command.
The remaining comment lines from the H1 line until the first blank line or the first
executable statement are displayed by the help command. They should contain a
brief summary of how to use the function.

A simple example of a user-defined function is shown next. Function dist2
calculates the distance between points sx

1
, y

1
d and sx

2
, y

2
d in a Cartesian coordinate

system.

function distance = dist2 (x1, y1, x2, y2)
%DIST2 Calculate the distance between two points
% Function DIST2 calculates the distance between
% two points (x1,y1) and (x2,y2) in a Cartesian
% coordinate system.
%
% Calling sequence:
% distance = dist2(x1, y1, x2, y2)

% Define variables:
% x1 –– x-position of point 1
% y1 –– y-position of point 1
% x2 –– x-position of point 2
% y2 –– y-position of point 2
% distance –– Distance between points

% Record of revisions:
% Date Programmer Description of change
% ==== ========== =====================
% 02/01/18 S. J. Chapman Original code

% Calculate distance.
distance = sqrt((x2-x1).^2 + (y2-y1).^2);

This function has four input arguments and one output argument. A simple script file
using this function is shown next.

30394_ch06_ptg01.indd 286 18/12/18 3:21 pm

6.1 Introduction to MATLAB Functions | 287

% Script file: test_dist2.m
%
% Purpose:
% This program tests function dist2.
%
% Record of revisions:
% Date Programmer Description of change
% ==== ========== =====================
% 02/01/18 S. J. Chapman Original code
%
% Define variables:
% ax -- x-position of point a
% ay -- y-position of point a
% bx -- x-position of point b
% by -- y-position of point b
% result -- Distance between the points

% Get input data.
disp('Calculate the distance between two points:');
ax = input('Enter x value of point a: ');
ay = input('Enter y value of point a: ');
bx = input('Enter x value of point b: ');
by = input('Enter y value of point b: ');

% Evaluate function
result = dist2 (ax, ay, bx, by);

% Write out result.
fprintf('The distance between points a and b is %f\n',result);

When this script file is executed, the results are:

» test_dist2
Calculate the distance between two points:
Enter x value of point a: 1
Enter y value of point a: 1
Enter x value of point b: 4
Enter y value of point b: 5
The distance between points a and b is 5.000000

These results are correct, as we can verify from simple hand calculations.
Function dist2 also supports the MATLAB help subsystem. If we type “help

dist2”, the results are:

» help dist2
DIST2 Calculate the distance between two points
 Function DIST2 calculates the distance between

30394_ch06_ptg01.indd 287 18/12/18 3:21 pm

288 | Chapter 6 Basic User-Defined Functions

 two points (x1,y1) and (x2,y2) in a Cartesian
 coordinate system.

 Calling sequence:
 res = dist2(x1, y1, x2, y2)

Similarly, “lookfor distance” produces the result

» lookfor distance
dist2 - Calculate the distance between two points
turningdist - Find the turning distance of two polyshapes

To observe the behavior of the MATLAB workspace before, during, and after the
function is executed, we will load function dist2 and the script file test_dist2
into the MATLAB debugger, and set breakpoints before, during, and after the func-
tion call (see Figure 6.1). When the program stops at the breakpoint before the func-
tion call, the workspace is as shown in Figure 6.2a. Note that variables ax, ay, bx,

Figure 6.1 M-file test_dist2 and function dist2 are loaded into the
debugger, with breakpoints set before, during, and after the function call.

30394_ch06_ptg01.indd 288 18/12/18 3:21 pm

6.1 Introduction to MATLAB Functions | 289

(a)

Figure 6.2 (a) The workspace before the function
call. (b) The workspace during the function call. (c) The
workspace after the function call.

(c)

(b)

30394_ch06_ptg01.indd 289 18/12/18 3:21 pm

290 | Chapter 6 Basic User-Defined Functions

and by are defined in the workspace with the values that we have entered. When the
program stops at the breakpoint within the function call, the function’s workspace
is active. It is as shown in Figure 6.2b. Note that variables x1, x2, y1, y2, and
distance are defined in the function’s workspace, and the variables defined in the
calling M-file are not present. When the program stops in the calling program at the
breakpoint after the function call, the workspace is as shown in Figure 6.2c. Now
the original variables are back, with the variable result added to contain the value
returned by the function. These figures show that the workspace of the function is
different from the workspace of the calling M-file.

6.2 Variable Passing in MATLAB: The Pass-by-Value Scheme

MATLAB programs communicate with their functions using a pass-by-value
scheme. When a function call occurs, MATLAB makes a copy of the actual argu-
ments and passes them to the function. This copying is very significant because it
means that even if the function modifies the input arguments, it won’t affect the
original data in the caller. This feature helps to prevent unintended side effects,
in which an error in the function might unintentionally modify variables in the
calling program.

This behavior is illustrated in the function shown next. This function has two
input arguments: a and b. During its calculations, it modifies both input arguments.

function out = sample(a, b)
fprintf('In sample: a = %f, b = %f %f\n',a,b);
a = b(1) + 2*a;
b = a .* b;
out = a + b(1);
fprintf('In sample: a = %f, b = %f %f\n',a,b);

A simple test program to call this function is shown next.

a = 2; b = [6 4];
fprintf('Before sample: a = %f, b = %f %f\n',a,b);
out = sample(a,b);
fprintf('After sample: a = %f, b = %f %f\n',a,b);
fprintf('After sample: out = %f\n',out);

When this program is executed, the results are:

» test_sample
Before sample: a = 2.000000, b = 6.000000 4.000000
In sample: a = 2.000000, b = 6.000000 4.000000
In sample: a = 10.000000, b = 60.000000 40.000000
After sample: a = 2.000000, b = 6.000000 4.000000
After sample: out = 70.000000

Note that a and b were both changed inside function sample, but those changes had
no effect on the values in the calling program.

30394_ch06_ptg01.indd 290 18/12/18 3:21 pm

6.2 Variable Passing in MATLAB: The Pass-by-Value Scheme | 291

Users of the C language will be familiar with the pass-by-value scheme, since
C uses it for scalar values passed to functions. However, C does not use the pass-by-
value scheme when passing arrays, so an unintended modification to a dummy array
in a C function can cause side-effects in the calling program. MATLAB improves on
this by using the pass-by-value scheme for both scalars and arrays.2

2The implementation of argument passing in MATLAB is actually more sophisticated than this discussion
indicates. As pointed out, the copying associated with pass-by-value takes up a lot of time, but it provides
protection against unintended side-effects. MATLAB actually uses the best of both approaches: it analyzes
each argument of each function and determines whether or not the function modifies that argument. If the
function modifies the argument, then MATLAB makes a copy of it. If it does not modify the argument,
then MATLAB simply points to the existing value in the calling program. This practice increases speed
while still providing protection against side effects.

Example 6.1—Rectangular-to-Polar Conversion

The location of a point in a Cartesian plane can be expressed in either the rectangular
coordinates (x,y) or the polar coordinates (r,u), as shown in Figure 6.3. The relation-
ships among these two sets of coordinates are given by the following equations:

 x 5 r cos u (6.1)

 x 5 r sin u (6.2)

 r 5 Ïx
2 1 y

2 (6.3)

 u 5 tan21
y

x
 (6.4)

▶

x

y

r

�

Py

x

Figure 6.3 A point P in a Cartesian plane can be located by either
the rectangular coordinates (x,y) or the polar coordinates (r,u).

30394_ch06_ptg01.indd 291 18/12/18 3:21 pm

292 | Chapter 6 Basic User-Defined Functions

Write two functions rect2polar and polar2rect that convert coordinates from
rectangular to polar form, and vice versa, where the angle u is expressed in degrees.

Solution We will apply our standard problem-solving approach to creating these
functions. Note that MATLAB’s trigonometric functions work in radians, so we must
convert from degrees to radians and vice versa when solving this problem. The basic
relationship between degrees and radians is

 1808 5 p radians (6.5)

1. State the problem
A succinct statement of the problem is:

Write a function that converts a location on a Cartesian plane expressed in
rectangular coordinates into the corresponding polar coordinates, with the
angle u expressed in degrees. Also, write a function that converts a loca-
tion on a Cartesian plane expressed in polar coordinates with the angle u
expressed in degrees into the corresponding rectangular coordinates.

2. Define the inputs and outputs
The inputs to function rect2polar are the rectangular (x,y) location of a
point. The outputs of the function are the polar (r, u) location of the point. The
inputs to function polar2rect are the polar (r, u) location of a point. The
outputs of the function are the rectangular (x,y) location of the point.

3. Describe the algorithm
These functions are very simple, so we can directly write the final pseudo-
code for them. The pseudocode for function polar2rect is:

 x ← r * cos(theta * pi/180)
 y ← r * sin(theta * pi/180)

The pseudocode for function rect2polar will use the function atan2,
because that function works over all four quadrants of the Cartesian plane.
(Look up that function in the MATLAB Help Browser.)

 r ← sqrt(x.^2 + y .^2)
 theta ← 180/pi * atan2(y,x)

4. Turn the algorithm into MATLAB statements
The MATLAB code for the selection polar2rect function is shown next.

function [x, y] = polar2rect(r,theta)
%POLAR2RECT Convert rectangular to polar coordinates
% Function POLAR2RECT accepts the polar coordinates
% (r,theta), where theta is expressed in degrees,
% and converts them into the rectangular coordinates
% (x,y).
%
% Calling sequence:
% [x, y] = polar2rect(r,theta)

30394_ch06_ptg01.indd 292 18/12/18 3:21 pm

6.2 Variable Passing in MATLAB: The Pass-by-Value Scheme | 293

% Define variables:
% r -- Length of polar vector
% theta -- Angle of vector in degrees
% x -- x-position of point
% y -- y-position of point

% Record of revisions:
% Date Programmer Description of change
% ==== ========== =====================
% 02/01/18 S. J. Chapman Original code

x = r * cos(theta * pi/180);
y = r * sin(theta * pi/180);

The MATLAB code for the selection rect2polar function is shown next.

function [r, theta] = rect2polar(x,y)
%RECT2POLAR Convert rectangular to polar coordinates
% Function RECT2POLAR accepts the rectangular coordinates
% (x,y) and converts them into the polar coordinates
% (r,theta), where theta is expressed in degrees.
%
% Calling sequence:
% [r, theta] = rect2polar(x,y)

% Define variables:
% r -- Length of polar vector
% theta -- Angle of vector in degrees
% x -- x-position of point
% y -- y-position of point

% Record of revisions:
% Date Programmer Description of change
% ==== ========== =====================
% 02/01/18 S. J. Chapman Original code

r = sqrt(x.^2 + y .^2);
theta = 180/pi * atan2(y,x);

Note that these functions both include help information, so they will work
properly with MATLAB’s help subsystem and with the lookfor command.

5. Test the program
To test these functions, we will execute them directly in the MATLAB Command
Window. We will test the functions using the 3-4-5 triangle, which is familiar to
most people from secondary school. The smaller angle within a 3-4-5 triangle is
approximately 36.87°. We will also test the function in all four quadrants of the
Cartesian plane to ensure that the conversions are correct everywhere.

30394_ch06_ptg01.indd 293 18/12/18 3:21 pm

294 | Chapter 6 Basic User-Defined Functions

» [r, theta] = rect2polar(4,3)
r =
 5
theta =
 36.8699
» [r, theta] = rect2polar(-4,3)
r =
 5
theta =
 143.1301
» [r, theta] = rect2polar(-4,-3)
r =
 5
theta =
 -143.1301
» [r, theta] = rect2polar(4,-3)
r =
 5
theta =
 -36.8699
» [x, y] = polar2rect(5,36.8699)
x =
 4.0000
y =
 3.0000
» [x, y] = polar2rect(5,143.1301)
x =
 -4.0000
y =
 3.0000
» [x, y] = polar2rect(5,-143.1301)
x =
 -4.0000
y =
 -3.0000
» [x, y] = polar2rect(5,-36.8699)
x =
 4.0000
y =
 -3.0000
»

These functions appear to be working correctly in all quadrants of the Cartesian
plane.

▶

30394_ch06_ptg01.indd 294 18/12/18 3:21 pm

6.2 Variable Passing in MATLAB: The Pass-by-Value Scheme | 295

Example 6.2—Sorting Data

In many scientific and engineering applications, it is necessary to take a random input
data set and to sort it so that the numbers in the data set are either all in ascending
order (lowest-to-highest) or all in descending order (highest-to-lowest). For exam-
ple, suppose that you were a zoologist studying a large population of animals and
that you wanted to identify the largest 5 percent of the animals in the population. The
most straightforward way to approach this problem would be to sort the sizes of all
of the animals in the population into ascending order and take the top 5 percent of
the values.

Sorting data into ascending or descending order seems to be an easy job. After
all, we do it all the time. It is simple matter for us to sort the data (10, 3, 6, 4, 9) into
the order (3, 4, 6, 9, 10). How do we do it? We first scan the input data list (10, 3,
6, 4, 9) to find the smallest value in the list (3), and then scan the remaining input
data (10, 6, 4, 9) to find the next smallest value (4), and so forth, until the complete
list is sorted.

In fact, sorting can be a very difficult job. As the number of values to be sorted
increases, the time required to perform the simple sort increases rapidly, since we
must scan the input data set once for each value sorted. For very large data sets, this
technique just takes too long to be practical. Even worse, how would we sort the data
if there were too many numbers to fit into the main memory of the computer? The
development of efficient sorting techniques for large data sets is an active area of
research and is the subject of whole courses.

In this example, we will confine ourselves to the simplest possible algorithm to
illustrate the concept of sorting. This simplest algorithm is called the selection sort.
It is just a computer implementation of the mental math described above. The basic
algorithm for the selection sort is:

1. Scan the list of numbers to be sorted to locate the smallest value in the list.
Place that value at the front of the list by swapping it with the value cur-
rently at the front of the list. If the value at the front of the list is already the
smallest value, then do nothing.

2. Scan the list of numbers from position 2 to the end to locate the next small-
est value in the list. Place that value in position 2 of the list by swapping it
with the value currently at that position. If the value in position 2 is already
the next smallest value, then do nothing.

3. Scan the list of numbers from position 3 to the end to locate the third small-
est value in the list. Place that value in position 3 of the list by swapping it
with the value currently at that position. If the value in position 3 is already
the third smallest value, then do nothing.

4. Repeat this process until the next-to-last position in the list is reached.
After the next-to-last position in the list has been processed, the sort is
complete.

Note that if we are sorting N values, this sorting algorithm requires N-1 scans through
the data to accomplish the sort.

▶

30394_ch06_ptg01.indd 295 18/12/18 3:21 pm

296 | Chapter 6 Basic User-Defined Functions

This process is illustrated in Figure 6.4. Since there are 5 values in the data set
to be sorted, we will make 4 scans through the data. During the first pass through
the entire data set, the minimum value is 3, so the 3 is swapped with the 10, which
was in position 1. Pass 2 searches for the minimum value in positions 2 through 5.
That minimum is 4, so the 4 is swapped with the 10 in position 2. Pass 3 searches for
the minimum value in positions 3 through 5. That minimum is 6, which is already
in position 3, so no swapping is required. Finally, pass 4 searches for the minimum
value in positions 4 through 5. That minimum is 9, so the 9 is swapped with the 10 in
position 4, and the sort is completed.

10

3

6

4

9

3

10

6

4

9

3

4

6

10

9

3

4

6

10

9

3

4

6

9

10

Swap Swap No Swap Swap

Figure 6.4 An example problem demonstrating the selection sort algorithm.

Programming Pitfalls

The selection sort algorithm is the easiest sorting algorithm to understand, but it
is computationally inefficient. It should never be applied to sort large data sets
(say, sets with more than 1000 elements). Over the years, computer scientists have
developed much more efficient sorting algorithms. The sort and sortrows
functions built into MATLAB are extremely efficient and should be used for all
real work.

We will now develop a program to read in a data set from the Command Win-
dow, sort it into ascending order, and display the sorted data set. The sorting will be
done by a separate user-defined function.

Solution This program must be able to ask the user for the input data, sort the data,
and write out the sorted data. The design process for this problem is given next.

30394_ch06_ptg01.indd 296 18/12/18 3:21 pm

6.2 Variable Passing in MATLAB: The Pass-by-Value Scheme | 297

1. State the problem
We have not yet specified the type of data to be sorted. If the data is numeri-
cal, then the problem may be stated as follows:

Develop a program to read an arbitrary number of numerical input val-
ues from the Command Window, sort the data into ascending order using
a separate sorting function, and write the sorted data to the Command
Window.

2. Define the inputs and outputs
The inputs to this program are the numerical values typed in the Command
Window by the user. The outputs from this program are the sorted data values
written to the Command Window.

3. Describe the algorithm
This program can be broken down into three major steps:

Read the input data into an array
Sort the data in ascending order
Write the sorted data

The first major step is to read in the data. We must prompt the user for
the number of input data values and then read in the data. Since we will know
how many input values there are to read, a for loop is appropriate for read-
ing in the data. The detailed pseudocode is shown next:

Prompt user for the number of data values
Read the number of data values
Preallocate an input array
for ii = 1:number of values
 Prompt for next value
 Read value
end

Next we have to sort the data in a separate function. We will need to make
nvals-1 passes through the data, finding the smallest remaining value each
time. We will use a pointer to locate the smallest value in each pass. Once
the smallest value is found, it will be swapped to the top of the list if it is not
already there. The detailed pseudocode is shown next:

for ii = 1:nvals-1

 % Find the minimum value in a(ii) through a(nvals)
 iptr ← ii
 for jj == ii+1 to nvals
 if a(jj) < a(iptr)
 iptr ← jj
 end
 end

30394_ch06_ptg01.indd 297 18/12/18 3:21 pm

298 | Chapter 6 Basic User-Defined Functions

 % iptr now points to the min value, so swap a(iptr)
 % with a(ii) if iptr ~= ii.
 if i ~= iptr
 temp ← a(i)
 a(i) ← a(iptr)
 a(iptr) ← temp
 end
end

The final step is writing out the sorted values. No refinement of the pseudo-
code is required for that step. The final pseudocode is the combination of the
reading, sorting, and writing steps.

4. Turn the algorithm into MATLAB statements
The MATLAB code for the selection sort function is shown next.

function out = ssort(a)
%SSORT Selection sort data in ascending order
% Function SSORT sorts a numeric data set into
% ascending order. Note that the selection sort
% is relatively inefficient. DO NOT USE THIS
% FUNCTION FOR LARGE DATA SETS. Use MATLAB's
% "sort" function instead.

% Define variables:
% a -- Input array to sort
% ii -- Index variable
% iptr -- Pointer to min value
% jj -- Index variable
% nvals -- Number of values in "a"
% out -- Sorted output array
% temp -- Temp variable for swapping

% Record of revisions:
% Date Programmer Description of change
% ==== ========== =====================
% 02/02/18 S. J. Chapman Original code

% Get the length of the array to sort
nvals = length(a);

% Sort the input array
for ii = 1:nvals-1

 % Find the minimum value in a(ii) through a(n)
 iptr = ii;

30394_ch06_ptg01.indd 298 18/12/18 3:21 pm

6.2 Variable Passing in MATLAB: The Pass-by-Value Scheme | 299

 for jj = ii+1:nvals
 if a(jj) < a(iptr)
 iptr = jj;
 end
 end

 % iptr now points to the minimum value, so swap a(iptr)
 % with a(ii) if ii ~= iptr.
 if ii ~= iptr
 temp = a(ii);
 a(ii) = a(iptr);
 a(iptr) = temp;
 end
end

% Pass data back to caller
out = a;

The program to invoke the selection sort function is shown next.

% Script file: test_ssort.m

%
% Purpose:
% To read in an input data set, sort it into ascending
% order using the selection sort algorithm, and to
% write the sorted data to the Command Window. This
% program calls function "ssort" to do the actual
% sorting.
%
% Record of revisions:
% Date Programmer Description of change
% ==== ========== =====================
% 02/02/18 S. J. Chapman Original code

%
% Define variables:
% array -- Input data array
% ii -- Index variable
% nvals -- Number of input values
% sorted -- Sorted data array

% Prompt for the number of values in the data set
nvals = input('Enter number of values to sort: ');

% Preallocate array
array = zeros(1,nvals);

30394_ch06_ptg01.indd 299 18/12/18 3:21 pm

300 | Chapter 6 Basic User-Defined Functions

% Get input values
for ii = 1:nvals

 % Prompt for next value
 string = ['Enter value ' int2str(ii) ': '];
 array(ii) = input(string);

end

% Now sort the data
sorted = ssort(array);

% Display the sorted result.
fprintf('\nSorted data:\n');
for ii = 1:nvals
 fprintf(' %8.4f\n',sorted(ii));
end

5. Test the program
To test this program, we will create an input data set and run the program
with it. The data set should contain a mixture of positive and negative num-
bers as well as at least one duplicated value to see if the program works
properly under those conditions.

» test_ssort
Enter number of values to sort: 6
Enter value 1: -5
Enter value 2: 4
Enter value 3: -2
Enter value 4: 3
Enter value 5: -2
Enter value 6: 0

Sorted data:
 -5.0000
 -2.0000
 -2.0000
 0.0000
 3.0000
 4.0000

The program gives the correct answers for our test data set. Note that it works
for both positive and negative numbers as well as for repeated numbers.

▶

6.3 Optional Arguments

Many MATLAB functions support optional input arguments and output arguments.
For example, we have seen calls to the plot function with as few as two or as many
as seven input arguments. On the other hand, the function max supports either one or

30394_ch06_ptg01.indd 300 18/12/18 3:21 pm

6.3 Optional Arguments | 301

two output arguments. If there is only one output argument, max returns the maxi-
mum value of an array. If there are two output arguments, max returns both the max-
imum value and the location of the maximum value in an array. How do MATLAB
functions know how many input and output arguments are present, and how do they
adjust their behavior accordingly?

There are eight special functions that can be used by MATLAB functions to get
information about their optional arguments and to report errors in those arguments.
Six of these functions are introduced here, and the remaining two will be introduced
in Chapter 10 after we learn about the cell array data type. The functions introduced
now are:

■■ nargin—Returns the number of actual input arguments that were used to
call the function.

■■ nargout—Returns the number of actual output arguments that were used to
call the function.

■■ narginchk—Returns a standard error message if a function is called with
too few or too many arguments.

■■ error—Displays an error message and aborts the function producing the
error. This function is used if the argument errors are fatal.

■■ warning—Displays a warning message and continues function execution.
This function is used if the argument errors are not fatal and execution can
continue.

■■ inputname—Returns the actual name of the variable that corresponds to a
particular argument number.

When functions nargin and nargout are called within a user-defined
function, these functions return the number of actual input arguments and the
number of actual output arguments that were used when the user-defined function
was called.

Function narginchk generates an error message if a function is called with
too few or too many arguments. The syntax of this function is

narginchk(min_args,max_args);

where min_args is the minimum number of arguments and max_args is the
maximum number of arguments. If the number of arguments is outside the accept-
able limits, a standard error message is produced. If the number of arguments is
within acceptable limits, then execution continues with no error.

Function error is a standard way to display an error message and abort
the user-defined function that is causing the error. The syntax of this function is
error('msg'), where msg is a character array containing an error message.
When error is executed, it halts the current function and returns to the keyboard,
displaying the error message in the Command Window. If the message string is
empty, error does nothing, and execution continues.

Function warning is a standard way to display a warning message that includes
the function and line number where the problem occurred but let execution continue.
The syntax of this function is warning('msg'), where msg is a character array
containing a warning message. When warning is executed, it displays the warn-
ing message in the Command Window and lists the function name and line number

30394_ch06_ptg01.indd 301 18/12/18 3:21 pm

302 | Chapter 6 Basic User-Defined Functions

where the warning came from. If the message string is empty, warning does noth-
ing. In either case, execution of the function continues.

Function inputname returns the name of the actual argument used when a
function is called. The syntax of this function is

name = inputname(argno);

where argno is the number of the argument. If the argument is a variable, then its
name is returned. If the argument is an expression, then this function will return an
empty string. For example, consider the function

function myfun(x,y,z)
name = inputname(2);
disp(['The second argument is named ' name]);

When this function is called, the results are

» myfun(dog,cat)
The second argument is named cat
» myfun(1,2+cat)
The second argument is named

Function inputname is useful for displaying argument names in warning and error
messages.

Example 6.3—Using Optional Arguments

In this example we illustrate the use of optional arguments by creating a function that
accepts an (x,y) value in rectangular coordinates and produces the equivalent polar
representation consisting of a magnitude and an angle in degrees. The function will
be designed to support two input arguments, x and y. However, if only one argument
is supplied, the function will assume that the y value is zero and proceed with the
calculation. The function will normally return both the magnitude and the angle in
degrees, but if only one output argument is present, it will return only the magnitude.
This function is shown next:

function [mag, angle] = polar_value(x,y)
%POLAR_VALUE Converts (x,y) to (r,theta)
% Function POLAR_VALUE converts an input (x,y)
% value into (r,theta), with theta in degrees.
% It illustrates the use of optional arguments.

% Define variables:
% angle -- Angle in degrees
% mag -- Magnitude
% x -- Input x value
% y -- Input y value (optional)

▶

30394_ch06_ptg01.indd 302 18/12/18 3:21 pm

6.3 Optional Arguments | 303

% Record of revisions:
% Date Programmer Description of change
% ==== ========== =====================
% 02/03/18 S. J. Chapman Original code

% Check for a legal number of input arguments.
narginchk(1,2);

% If the y argument is missing, set it to 0.
if nargin < 2
 y = 0;
end

% Check for (0,0) input arguments, and print out
% a warning message.
if x == 0 & y == 0
 msg = 'Both x any y are zero: angle is meaningless!';
 warning(msg);
end

% Now calculate the magnitude.
mag = sqrt(x.^2 + y.^2);

% If the second output argument is present, calculate
% angle in degrees.
if nargout == 2
 angle = atan2(y,x) * 180/pi;
end

We will test this function by calling it repeatedly from the Command Window. First,
we will try to call the function with too few or too many arguments.

» [mag angle] = polar_value
Error using polar_value
Not enough input arguments.

» [mag angle] = polar_value(1,-1,1)
Error using polar_value
Too many input arguments.

The function provides proper error messages in both cases. Next, we will try to call
the function with one or two input arguments.

» [mag angle] = polar_value(1)
mag =
 1
angle =
 0

30394_ch06_ptg01.indd 303 18/12/18 3:21 pm

304 | Chapter 6 Basic User-Defined Functions

» [mag angle] = polar_value(1,-1)
mag =
 1.4142
angle =
 -45

The function provides the correct answer in both cases. Next, we will try to call the
function with one or two output arguments.

» mag = polar_value(1,-1)
mag =
 1.4142
» [mag angle] = polar_value(1,-1)
mag =
 1.4142
angle =
 -45

The function provides the correct answer in both cases. Finally, we will try to call the
function with both x and y equal to zero.

» [mag angle] = polar_value(0,0)

Warning: Both x and y are zero: angle is meaningless!
> In d:\book\matlab\chap6\polar_value.m at line 32
mag =
 0
angle =
 0

In this case, the function displays the warning message, but execution continues.

▶

Note that a MATLAB function may be declared to have more output arguments
than are actually used, and this is not an error. The function does not actually have
to check nargout to determine if an output argument is present. For example, con-
sider the following function:

function [z1, z2] = junk(x,y)
z1 = x + y;
z2 = x - y;
end % function junk

This function can be called successfully with one or two output arguments.

» a = junk(2,1)
a =
 3

30394_ch06_ptg01.indd 304 18/12/18 3:21 pm

6.4 Sharing Data Using Global Memory | 305

» [a b] = junk(2,1)
a =
 3
b =
 1

The reason for checking nargout in a function is to prevent useless work. If a result
is going to be thrown away anyway, why bother to calculate it in the first place? You
can speed up the operation of a program by not bothering with useless calculations.

Quiz 6.1

This quiz provides a quick check to see if you have understood the concepts
introduced in Sections 6.1 through 6.3. If you have trouble with the quiz, reread
the sections, ask your instructor for help, or discuss the material with a fellow
student. The answers to this quiz are found in the back of the book.

1. What are the differences between a script file and a function?
2. How does the help command work with user-defined functions?
3. What is the significance of the H1 comment line in a function?
4. What is the pass-by-value scheme? How does it contribute to good program

design?
5. How can a MATLAB function be designed to have optional arguments?

For questions 6 and 7, determine whether the function calls are correct or not. If
they are in error, specify what is wrong with them.

6. out = test1(6);

 function res = test1(x,y)
 res = sqrt(x.^2 + y.^2);

7. out = test2(12);

 function res = test2(x,y)
 narginchk(1,2));
 if nargin == 2
 res = sqrt(x.^2 + y.^2);
 else
 res = x;
 end

6.4 Sharing Data Using Global Memory

We have seen that programs exchange data with the functions they call through an
argument list. When a function is called, each actual argument is copied, and the
copy is used by the function.

30394_ch06_ptg01.indd 305 18/12/18 3:21 pm

306 | Chapter 6 Basic User-Defined Functions

In addition to the argument list, MATLAB functions can exchange data with
each other and with the base workspace through global memory. Global memory
is a special type of memory that can be accessed from any workspace. If a variable
is declared to be global in a function, then it will be placed in the global memory
instead of the local workspace. If the same variable is declared to be global in another
function, then that variable will refer to the same memory location as the variable in
the first function. Each script file or function that declares the global variable will
have access to the same data values, so global memory provides a way to share data
between functions.

A global variable is declared with the global statement. The form of a
global statement is

global var1 var2 var3 ...

where var1, var2, var3, and so forth are the variables to be placed in global
memory. By convention, global variables are declared in all capital letters, but this is
not actually a requirement.

Good Programming Practice

Declare global variables in all capital letters to make them easy to distinguish from
local variables.

Good Programming Practice

Declare global variables immediately after the initial comments and before the first
executable statement of each function that uses them.

Each global variable must be declared to be global before it is used for the first
time in a function—it is an error to declare a variable to be global after it has already
been created in the local workspace.3 To avoid this error, it is customary to declare
global variables immediately after the initial comments and before the first exe-
cutable statement in a function.

3If a variable is declared global after it has already been defined in a function, MATLAB will issue a
warning message and then change the local value to match the global value. You should never rely on this
capability, though, because future versions of MATLAB will not allow it.

Global variables are especially useful for sharing very large volumes of data
among many functions because the entire data set does not have to be copied each
time that a function is called. The downside of using global memory to exchange
data among functions is that the functions will only work for that specific data set.

30394_ch06_ptg01.indd 306 18/12/18 3:21 pm

6.4 Sharing Data Using Global Memory | 307

A function that exchanges data through input arguments can be reused by
simply calling it with different arguments, but a function that exchanges data
through global memory must be modified to allow it to work with a different
data set.

Global variables are also useful for sharing hidden data among a group of related
functions while keeping it invisible from the invoking program unit.

Good Programming Practice

You may use global memory to pass large amounts of data among functions within
a program.

Example 6.4—Random Number Generator

It is impossible to make perfect measurements in the real world. There will always
be some measurement noise associated with each measurement. This fact is an
important consideration in the design of systems to control the operation of such
real-world devices as airplanes, refineries, and nuclear reactors. A good engineering
design must take these measurement errors into account so that the noise in the mea-
surements will not lead to unstable behavior (no plane crashes, refinery explosions,
or meltdowns).

Most engineering designs are tested by running simulations of the operation of
the system before it is built. These simulations involve creating mathematical models
of the behavior of the system and feeding the models a realistic string of input data.
If the models respond correctly to the simulated input data, then we can have reason-
able confidence that the real-world system will respond correctly to the real-world
input data.

The simulated input data supplied to the models must be corrupted by a simu-
lated measurement noise, which is just a string of random numbers added to the ideal
input data. The simulated noise is usually produced by a random number generator.

A random number generator is a function that will return a different and appar-
ently random number each time it is called. Since the numbers are in fact generated
by a deterministic algorithm, they only appear to be random.4 However, if the algo-
rithm used to generate them is complex enough, the numbers will be random enough
to use in the simulation.

One simple random number generator algorithm is described next.5 It relies
on the unpredictability of the modulo function when applied to large numbers.

▶

4For this reason, some people refer to these functions as pseudorandom number generators.
5This algorithm is adapted from the discussion found in Chapter 7 of Numerical Recipes: The Art of Sci-
entific Programming by Press, Flannery, Teukolsky, and Vetterling, Cambridge University Press, 1986.

30394_ch06_ptg01.indd 307 18/12/18 3:21 pm

308 | Chapter 6 Basic User-Defined Functions

Recall from Chapter 2 that the modulus function mod returns the remainder after the
division of two numbers. Consider the following equation:

 n
i11

5 mods8121n
i
1 28411, 134456d (6.6)

Assume that n
i
 is a nonnegative integer. Then because of the modulo function, n

i11

will be a number between 0 and 134455 inclusive. Next, n
i11

 can be fed into the
equation to produce a number n

i12
 that is also between 0 and 134455. This process

can be repeated forever to produce a series of numbers in the range [0, 134455].
If we didn’t know the numbers 8121, 28411, and 134456 in advance, it would be
impossible to guess the order in which the values of n would be produced. Fur-
thermore, it turns out that there is an equal (or uniform) probability that any given
number will appear in the sequence. Because of these properties, Equation (6.6)
can serve as the basis for a simple random number generator with a uniform
distribution.

We will now use Equation (6.6) to design a random number generator whose
output is a real number in the range [0.0, 1.0).6

Solution We will write a function that generates one random number in the range
0 # ran # 1.0 each time that it is called. The random number will be based on the
equation

 ran
i
5

n
i

134456
 (6.7)

where n
i
 is a number in the range 0 to 134455 produced by Equation (6.7).

The particular sequence produced by Equations (6.6) and (6.7) will depend on
the initial value of n

0
 (called the seed) of the sequence. We must provide a way for the

user to specify n
0
 so that the sequence may be varied from run to run.

1. State the problem
Write a function random0 that will generate and return an array ran con-
taining one or more numbers with a uniform probability distribution in the
range 0 # ran , 1.0, based on the sequence specified by Equations (6.6)
and (6.7). The function should have one or two input arguments (m and n)
specifying the size of the array to return. If there is one argument, the func-
tion should generate square array of size m × m. If there are two arguments,
the function should generate an array of size m × n. The initial value of the
seed n

0
 will be specified by a call to a function called seed.

2. Define the inputs and outputs
There are two functions in this problem: seed and random0. The input to
function seed is an integer to serve as the starting point of the sequence.
There is no output from this function. The input to function random0 is
one or two integers specifying the size of the array of random numbers to

6The notation [0.0, 1.0) implies that the range of the random numbers is between 0.0 and 1.0, including the
number 0.0 but excluding the number 1.0.

30394_ch06_ptg01.indd 308 18/12/18 3:21 pm

6.4 Sharing Data Using Global Memory | 309

be generated. If only argument m is supplied, the function should generate a
square array of size m × m. If both arguments m and n are supplied, the func-
tion should generate an array of size n × m. The output from the function is
the array of random values in the range [0.0, 1.0).

3. Describe the algorithm
The pseudocode for function random0 is:

function ran = random0 (m, n)
Check for valid arguments
Set n ← m if not supplied
Create output array with "zeros" function
for ii = 1:number of rows
 for jj = 1:number of columns
 ISEED ← mod (8121 * ISEED + 28411, 134456)
 ran(ii,jj) ← iseed / 134456
 end
end

where the value of ISEED is placed in global memory so that it is saved
between calls to the function. The pseudocode for function seed is trivial:

function seed (new_seed)
new_seed ← round(new_seed)
ISEED ← abs(new_seed)

The round function is used in case the user fails to supply an integer, and
the absolute value function is used in case the user supplies a negative seed.
The user will not have to know in advance that only positive integers are
legal seeds.

The variable ISEED will be placed in global memory so that it may be
accessed by both functions.

4. Turn the algorithm into MATLAB statements
Function random0 is shown next.

function ran = random0(m,n)
%RANDOM0 Generate uniform random numbers in [0,1)
% Function RANDOM0 generates an array of uniform
% random numbers in the range [0,1). The usage
% is:
%
% random0(m) -- Generate an m x m array
% random0(m,n) -- Generate an m x n array

% Define variables:
% ii -- Index variable

30394_ch06_ptg01.indd 309 18/12/18 3:21 pm

310 | Chapter 6 Basic User-Defined Functions

% ISEED -- Random number seed (global)
% jj -- Index variable
% m -- Number of columns
% n -- Number of rows
% ran -- Output array
%
% Record of revisions:
% Date Programmer Description of change
% ==== ========== =====================
% 02/04/18 S. J. Chapman Original code

% Declare global values
global ISEED % Seed for random number generator

% Check for a legal number of input arguments.
narginchk(1,2);

% If the n argument is missing, set it to m.
if nargin < 2
 n = m;
end

% Initialize the output array
ran = zeros(m,n);

% Now calculate random values
for ii = 1:m
 for jj = 1:n
 ISEED = mod(8121*ISEED + 28411, 134456);
 ran(ii,jj) = ISEED / 134456;
 end
end

Function seed is as follows:

function seed(new_seed)
%SEED Set new seed for function RANDOM0
% Function SEED sets a new seed for function
% RANDOM0. The new seed should be a positive
% integer.

% Define variables:
% ISEED -- Random number seed (global)
% new_seed -- New seed

30394_ch06_ptg01.indd 310 18/12/18 3:21 pm

6.4 Sharing Data Using Global Memory | 311

% Record of revisions:
% Date Programmer Description of change
% ==== ========== =====================
% 02/04/18 S. J. Chapman Original code
%
% Declare globl values
global ISEED % Seed for random number generator

% Check for a legal number of input arguments.
narginchk(1,1);

% Save seed
new_seed = round(new_seed);
ISEED = abs(new_seed);

5. Test the resulting MATLAB programs
If the numbers generated by these functions are truly uniformly distributed
random numbers in the range 0 # ran , 1.0, then the average of many
numbers should be close to 0.5 and the standard deviation of the numbers

should be close to
1

Ï12
.

Furthermore, if the range between 0 and 1 is divided into a number of
equal-size bins, the number of random values falling in each bin should be
about the same. A histogram is a plot of the number of values falling in each
bin. MATLAB function histogram will create and plot a histogram from
an input data set, so we will use it to verify the distribution of random num-
bers generated by random0.

To test the results of these functions, we will perform the following
tests:

1. Call seed with new_seed set to 1024.
2. Call random0(4) to see that the results appear random.
3. Call random0(4) to verify that the results differ from call to call.
4. Call seed again with new_seed set to 1024.
5. Call random0(4) to see that the results are the same as in (2) above. This

verifies that the seed is being reset properly.
6. Call random0(2,3) to verify that both input arguments are being used

correctly.
7. Call random0(1,100000) and calculate the average and standard devi-

ation of the resulting data set using MATLAB functions mean and std.

Compare the results to 0.5 and
1

Ï12
.

8. Create a histogram of the data from (7) to see if approximately equal num-
bers of values fall in each bin.

30394_ch06_ptg01.indd 311 18/12/18 3:21 pm

312 | Chapter 6 Basic User-Defined Functions

We will perform these tests interactively, checking the results as we go.

» seed(1024)
» random0(4)
ans =
 0.0598 1.0000 0.0905 0.2060
 0.2620 0.6432 0.6325 0.8392
 0.6278 0.5463 0.7551 0.4554
 0.3177 0.9105 0.1289 0.6230
» random0(4)
ans =
 0.2266 0.3858 0.5876 0.7880
 0.8415 0.9287 0.9855 0.1314
 0.0982 0.6585 0.0543 0.4256
 0.2387 0.7153 0.2606 0.8922
» seed(1024)
» random0(4)
ans =
 0.0598 1.0000 0.0905 0.2060
 0.2620 0.6432 0.6325 0.8392
 0.6278 0.5463 0.7551 0.4554
 0.3177 0.9105 0.1289 0.6230
» random0(2,3)
ans =
 0.2266 0.3858 0.5876
 0.7880 0.8415 0.9287
» edit random
» mean(arr)
ans =
 0.5001
» std(arr)
ans =
 0.2887
» histogram(arr,10)
» title('\bfHistogram of the Output of random0');
» xlabel('Bin');
» ylabel('Count');

The results of these tests look reasonable, so the function appears to be work-
ing. The average of the data set was 0.5001, which is close to the theoretical
value of 0.5000, and the standard deviation of the data set was 0.2887, which
is equal to the theoretical value of 0.2887 to the accuracy displayed. The
histogram is shown in Figure 6.5, and the distribution of the random values is
roughly even across all of the bins.

30394_ch06_ptg01.indd 312 18/12/18 3:21 pm

6.5 Preserving Data between Calls to a Function | 313

Figure 6.5 Histogram of the output of function random0.

▶

6.5 Preserving Data between Calls to a Function

When a function finishes executing, the special workspace created for that function
is destroyed, so the contents of all local variables within the function will disappear.
The next time that the function is called, a new workspace will be created, and all of
the local variables will be returned to their default values. This behavior is usually
desirable since it ensures that MATLAB functions behave in a repeatable fashion
every time they are called.

However, it is sometimes useful to preserve some local information within a func-
tion between calls to the function. For example, we might want to create a counter to
count the number of times that the function has been called. If such a counter were
destroyed every time the function exited, the count would never exceed 1!

MATLAB includes a special mechanism to allow local variables to be preserved
between calls to a function. Persistent memory is a special type of memory that can
only be accessed from within the function but is preserved unchanged between calls
to the function.

30394_ch06_ptg01.indd 313 18/12/18 3:21 pm

314 | Chapter 6 Basic User-Defined Functions

A persistent variable is declared with the persistent statement. The form
of a global statement is

persistent var1 var2 var3 ...

where var1, var2, var3, and so forth are the variables to be placed in persistent
memory.

Good Programming Practice

Use persistent memory to preserve the values of local variables within a function
between calls to the function.

Example 6.5—Running Averages

It is sometimes desirable to calculate running statistics on a data set on-the-fly as the
values are being entered. The built-in MATLAB functions mean and std could per-
form this function, but we would have to pass the entire data set to them for re-calcu-
lation after each new data value is entered. A better result can be achieved by writing
a special function that keeps track of the appropriate running sums between calls and
only needs the latest value to calculate the current average and standard deviation.

The average or arithmetic mean of a set of numbers is defined as

 x 5
1

N
 o

N

i51

x
i
 (6.8)

where x
i
 is sample i out of N samples. The standard deviation of a set of numbers is

defined as

 s 5ÎNo
N

i51

x 2
i 2 1o

N

i51

xi2
2

NsN 2 1d
 (6.9)

Standard deviation is a measure of the amount of scatter on the measurements; the
greater the standard deviation, the more scattered the points in the data set are. If we
can keep track of the number of values N, the sum of the values Σx, and the sum of
the squares of the values Σx2, then we can calculate the average and standard devia-
tion at any time from Equations (6.8) and (6.9).

Write a function to calculate the running average and standard deviation of a
data set as it is being entered.

Solution This function must be able to accept input values one at a time and keep
running sums of N, Σx, and Σx2, which will be used to calculate the current average
and standard deviation. It must store the running sums in global memory so that they
are preserved between calls. Finally, there must be a mechanism to reset the running
sums.

▶

30394_ch06_ptg01.indd 314 18/12/18 3:21 pm

6.5 Preserving Data between Calls to a Function | 315

1. State the problem
Create a function to calculate the running average and standard deviation of
a data set as new values are entered. The function must also include a feature
to reset the running sums when desired.

2. Define the inputs and outputs
There are two types of inputs required by this function:

1. The character array 'reset' to reset running sums to zero.
2. The numerical values from the input data set, present one value per

function call.

The outputs from this function are the mean and standard deviation of the
data supplied to the function so far.

3. Design the algorithm
This function can be broken down into four major steps:

Check for a legal number of arguments
Check for a 'reset', and reset sums if present
Otherwise, add current value to running sums
Calculate and return running average and std dev
 if enough data is available. Return zeros if
 not enough data is available.

The detailed pseudocode for these steps is:

Check for a legal number of arguments
if x == 'reset'
 n ← 0
 sum_x ← 0
 sum_x2 ← 0
else
 n ← n + 1
 sum_x ← sum_x + x
 sum_x2 ← sum_x2 + x^2
end

% Calculate ave and std
if n == 0
 ave ← 0
 std ← 0
elseif n == 1
 ave ← sum_x
 std ← 0
else
 ave ← sum_x / n
 std ← sqrt((n*sum_x2 – sum_x^2) / (n*(n-1)))
end

30394_ch06_ptg01.indd 315 18/12/18 3:21 pm

316 | Chapter 6 Basic User-Defined Functions

4. Turn the algorithm into MATLAB statements
The final MATLAB function is shown next.

function [ave, std] = runstats(x)
%RUNSTATS Generate running ave / std deviation
% Function RUNSTATS generates a running average
% and standard deviation of a data set. The
% values x must be passed to this function one
% at a time. A call to RUNSTATS with the argument
% 'reset' will reset the running sums.

% Define variables:
% ave -- Running average
% n -- Number of data values
% std -- Running standard deviation
% sum_x -- Running sum of data values
% sum_x2 -- Running sum of data values squared
% x -- Input value
%
% Record of revisions:
% Date Programmer Description of change
% ==== ========== =====================
% 02/05/18 S. J. Chapman Original code

% Declare persistent values
persistent n % Number of input values
persistent sum_x % Running sum of values
persistent sum_x2 % Running sum of values squared

% Check for a legal number of input arguments.
narginchk(1,1);

% If the argument is 'reset', reset the running sums.
if x == 'reset'
 n = 0;
 sum_x = 0;
 sum_x2 = 0;
else
 n = n + 1;
 sum_x = sum_x + x;
 sum_x2 = sum_x2 + x^2;
end

% Calculate ave and std
if n == 0
 ave = 0;
 std = 0;

30394_ch06_ptg01.indd 316 18/12/18 3:21 pm

6.5 Preserving Data between Calls to a Function | 317

elseif n == 1
 ave = sum_x;
 std = 0;
else
 ave = sum_x / n;
 std = sqrt((n*sum_x2 - sum_x^2) / (n*(n-1)));
end

5. Test the program
To test this function, we must create a script file that resets runstats, reads
input values, calls runstats, and displays the running statistics. An appro-
priate script file is shown next:

% Script file: test_runstats.m
%
% Purpose:
% To read in an input data set and calculate the
% running statistics on the data set as the values
% are read in. The running stats will be written
% to the Command Window.
%
% Record of revisions:
% Date Programmer Description of change
% ==== ========== =====================
% 02/05/18 S. J. Chapman Original code
%
% Define variables:
% array -- Input data array
% ave -- Running average
% std -- Running standard deviation
% ii -- Index variable
% nvals -- Number of input values
% std -- Running standard deviation

% First reset running sums
[ave std] = runstats('reset');

% Prompt for the number of values in the data set
nvals = input('Enter number of values in data set: ');

% Get input values
for ii = 1:nvals

 % Prompt for next value
 string = ['Enter value ' int2str(ii) ': '];
 x = input(string);

30394_ch06_ptg01.indd 317 18/12/18 3:21 pm

318 | Chapter 6 Basic User-Defined Functions

 % Get running statistics
 [ave std] = runstats(x);

 % Display running statistics
 fprintf('Average = %8.4f; Std dev = %8.4f\n',ave, std);

end

To test this function, we will calculate running statistics by hand for a set of 5
numbers and compare the hand calculations to the results from the program.
If a data set is created with the following 5 input values

3., 2., 3., 4., 2.8

then the running statistics calculated by hand would be:

Value n Sx Sx2 Average Std_dev

3.0 1 3.0 9.0 3.00 0.000
2.0 2 5.0 13.0 2.50 0.707
3.0 3 8.0 22.0 2.67 0.577
4.0 4 12.0 38.0 3.00 0.816
2.8 5 14.8 45.84 2.96 0.713

The output of the test program for the same data set is:

» test_runstats
Enter number of values in data set: 5
Enter value 1: 3
Average = 3.0000; Std dev = 0.0000
Enter value 2: 2
Average = 2.5000; Std dev = 0.7071
Enter value 3: 3
Average = 2.6667; Std dev = 0.5774
Enter value 4: 4
Average = 3.0000; Std dev = 0.8165
Enter value 5: 2.8
Average = 2.9600; Std dev = 0.7127

so the results check to the accuracy shown in the hand calculations.

▶

6.6 Built-In MATLAB Functions: Sorting Functions

MATLAB includes two built-in sorting functions that are extremely efficient and
should be used instead of the simple sort function we created in Example 6.2. These
functions are enormously faster than the sort we created in Example 6.2, and the
speed difference increases rapidly as the size of the data set to sort increases.

30394_ch06_ptg01.indd 318 18/12/18 3:21 pm

6.6 Built-In MATLAB Functions: Sorting Functions | 319

Function sort sorts a data set into ascending or descending order. If the data is
a column or row vector, the entire data set is sorted. If the data is a two-dimensional
matrix, the columns of the matrix are sorted separately.

The most common forms of the sort function are

res = sort(a); % Sort in ascending order
res = sort(a,'ascend'); % Sort in ascending order
res = sort(a,'descend'); % Sort in descending order

If a is a vector, the data set is sorted in the specified order. For example,

» a = [1 4 5 2 8];
» sort(a)
ans =
 1 2 4 5 8
» sort(a,'ascend')
ans =
 1 2 4 5 8
» sort(a,'descend')
ans =
 8 5 4 2 1

If b is a matrix, the data set is sorted independently by column. For example,

» b = [1 5 2; 9 7 3; 8 4 6]
b =
 1 5 2
 9 7 3
 8 4 6
» sort(b)
ans =
 1 4 2
 8 5 3
 9 7 6

Function sortrows sorts a matrix of data into ascending or descending order
according to one or more specified columns.

The most common forms of the sortrows function are

res = sortrows(a); % Ascending sort of col 1
res = sortrows(a,n); % Ascending sort of col n
res = sortrows(a,-n); % Descending order of col n

It is also possible to sort by more than one column. For example, the statement

res = sortrows(a,[m n]);

would sort the rows by column m, and if two or more rows have the same value in
column m, it would further sort those rows by column n.

For example, suppose b is a matrix as defined in the following code fragment.
Then sortrows(b) will sort the rows in ascending order of column 1, and sor-
trows(b,[2 3]) will sort the rows in ascending order of columns 2 and 3.

30394_ch06_ptg01.indd 319 18/12/18 3:21 pm

320 | Chapter 6 Basic User-Defined Functions

» b = [1 7 2; 9 7 3; 8 4 6]
b =
 1 7 2
 9 7 3
 8 4 6
» sortrows(b)
ans =
 1 7 2
 8 4 6
 9 7 3
» sortrows(b,[2 3])
ans =
 8 4 6
 1 7 2
 9 7 3

6.7 Built-In MATLAB Functions: Random Number Functions

MATLAB includes two standard functions that generate random values from differ-
ent distributions. They are

■■ rand—Generates random values from a uniform distribution in the range [0, 1)
■■ randn—Generates random values from a normal distribution

Both of them are much faster and much more “random” than the simple function that
we have created. If you really need random numbers in your programs, use one of
these functions.

In a uniform distribution, every number in the range [0, 1) has an equal probabil-
ity of appearing. In contrast, the normal distribution is a classic “bell-shaped curve”
with the most likely number being 0.0 and a standard deviation of 1.0.

Functions rand and randn have the following calling sequences:

■■ rand()—Generates a single random value
■■ rand(n)—Generates an n 3 n array of random values
■■ rand(m,n)—Generates an m 3 n array of random values

6.8 Summary

In Chapter 6, we presented an introduction to user-defined functions. Functions are
special types of M-files that receive data through input arguments and return results
through output arguments. Each function has its own independent workspace. Each
function should appear in a separate file with the same name as the function, includ-
ing capitalization.

Functions are called by naming them in the Command Window or another
M-file. The names used should match the function name exactly, including capital-
ization. Arguments are passed to functions using a pass-by-value scheme, meaning

30394_ch06_ptg01.indd 320 18/12/18 3:21 pm

6.8 Summary | 321

that MATLAB copies each argument and passes the copy to the function. This copy-
ing is important because the function can freely modify its input arguments without
affecting the actual arguments in the calling program.

MATLAB functions can support varying numbers of input and output argu-
ments. Function nargin reports the number of actual input arguments used in a
function call, and function nargout reports the number of actual output arguments
used in a function call.

Data can also be shared between MATLAB functions by placing the data in
global memory. Global variables are declared using the global statement. Global
variables may be shared by all functions that declare them. By convention, global
variable names are written in all capital letters.

Internal data within a function can be preserved between calls to that function
by placing the data in persistent memory. Persistent variables are declared using the
persistent statement.

6.8.1 Summary of Good Programming Practice

Adhere to the following guidelines when working with MATLAB functions.

1. Break large program tasks into smaller, more understandable functions
whenever possible.

2. Declare global variables in all capital letters to make them easy to distin-
guish from local variables.

3. Declare global variables immediately after the initial comments and before
the first executable statement of each function that uses them.

4. You may use global memory to pass large amounts of data among functions
within a program.

5. Use persistent memory to preserve the values of local variables within a
function between calls to the function.

6.8.2 MATLAB Summary

The following summary lists all of the MATLAB commands and functions described
in this chapter, along with a brief description of each one.

Commands and Functions

error Displays error message and aborts the function producing the error. This function
is used if the argument errors are fatal.

global Declares global variables.

narginchk Returns a standard error message if a function is called with too few or too many
arguments.

nargin Returns the number of actual input arguments that were used to call the function.

nargout Returns the number of actual output arguments that were used to call the function.

persistent Declares persistent variables.

(continued)

30394_ch06_ptg01.indd 321 18/12/18 3:21 pm

322 | Chapter 6 Basic User-Defined Functions

Commands and Functions (Continued)

rand Generates random values from a uniform distribution.

randn Generates random values from a normal distribution.

return Stops executing a function and returns to caller.

sort Sorts data in ascending or descending order.

sortrows Sorts rows of a matrix in ascending or descending order based on a specified
column.

warning Displays a warning message and continues function execution. This function is
used if the argument errors are not fatal and execution can continue.

6.9 Exercises

6.1 What is the difference between a script file and a function?
6.2 When a function is called, how is data passed from the caller to the function, and

how are the results of the function returned to the caller?
6.3 What are the advantages and disadvantages of the pass-by-value scheme used in

MATLAB?
6.4 Modify the selection sort function developed in this chapter so that it accepts a

second optional argument, which may be either 'up' or 'down'. If the argu-
ment is 'up', sort the data in ascending order. If the argument is 'down', sort
the data in descending order. If the argument is missing, the default case is to sort
the data in ascending order. (Be sure to handle the case of invalid arguments, and
be sure to include the proper help information in your function.)

6.5 The inputs to MATLAB functions sin, cos, and tan are in radians, and the
output of functions asin, acos, atan, and atan2 are in radians. Create a
new set of functions sin_d, cos_d, and so forth whose inputs and outputs are
in degrees. Be sure to test your functions. (Note: Recent versions of MATLAB
have built-in functions sind, cosd, and so forth, which work with inputs in
degrees instead of radians. You can evaluate your functions and the correspond-
ing built-in functions with the same input values to verify the proper operation
of your functions.)

6.6 Write a function f_to_c that accepts a temperature in degrees Fahrenheit and
returns the temperature in degrees Celsius. The equation is

 T sin 8Cd 5
5

9
 fTsin 8Fd 2 32.0g (6.10)

6.7 Write a function c_to_f that accepts a temperature in degrees Celsius and
returns the temperature in degrees Fahrenheit. The equation is

 T sin 8Fd 5
9

5
 T sin 8Cd 1 32 (6.11)

Demonstrate that this function is the inverse of the one in Exercise 6.6. In other
words, demonstrate that the expression c_to_f(f_to_c(temp)) is just
the original temperature temp.

30394_ch06_ptg01.indd 322 18/12/18 3:21 pm

6.9 Exercises | 323

6.8 Factorial Function The factorial function is calculated from the equation

 n! 5 51 n 5 0

n 3 sn 2 1d 3 sn 2 2d 3 Á 3 2 3 1 n . 0
 (6.12)

where n is 0 or a positive integer. Write a function factorial that calculates
the factorial function from this equation. The function should check for the
proper number of input arguments and should throw an error if there are too
many or too few arguments. It should also check to ensure that the input is a
nonnegative integer (Hint: Check out the function isinteger) and create an
error if the value is not correct.

6.9 The area of a triangle whose three vertices are points sx
1
, y

1
d, sx

2
, y

2
d, and sx

3
, y

3
d

(see Figure 6.6) can be found from the equation

 A 5
1

2
 *

 x
1

 x
2

 x
3

y
1

y
2

y
3

 1 1 1 * (6.13)

where u u is the determinant operation. The area returned will be positive if the
points are taken in counterclockwise order, and negative if the points are taken
in clockwise order. This determinant can be evaluated by hand to produce the
following equation:

 A 5
1

2
 fx1

s

y
2

2 y
3
d 2 x

2
s

y
1

2 y
3
d 1 x

3
s

y
1

2 y
2
dg (6.14)

Write a function area2d that calculates the area of a triangle given the three
bounding points sx

1
, y

1
d, sx

2
, y

2
d, and sx

3
, y

3
d using Equation (6.14). Then test

your function by calculating the area of a triangle bounded by the points (0, 0),
(5, 0), and (15, 10).

6.10 Write a new function area2d_1 that calculates the area of a triangle directly
from Equation (6.13). Create the array

 arr 5 3
x

1
x

2
x

3

y
1

y
2

y
3

1 1 14 (6.15)

and then use the function det() to calculate the determinant of the array arr.
Prove that the new function produces the same result as the function created
in Exercise 6.8.

(x3, y3)

(x2, y2)(x1, y1)

Figure 6.6 A triangle bounded by points (x1,y1), (x2,y2), and (x3,y3).

30394_ch06_ptg01.indd 323 18/12/18 3:21 pm

324 | Chapter 6 Basic User-Defined Functions

6.11 The area inside any polygon can be broken down into a series of triangles, as
shown in Figure 6.7. If there are n sides to the polygon, then it can be divided
into n 2 2 triangles. Create a function that calculates the perimeter of the poly-
gon and the area enclosed by the polygon. Use function area2d from the pre-
vious exercise to calculate the area of the polygon. Write a program that accepts
an ordered list of points bounding a polygon and calls your function to return
the perimeter and area of the polygon. Then test your function by calculating
the perimeter and area of a polygon bounded by the points (0, 0), (9, 0), (8, 9),
(2, 10), and (24, 5).

6.12 Inductance of a Transmission Line The inductance per meter of a single-phase,
two-wire transmission line is given by the equation

 L 5
µ

0

p
 31

4
 1 ln 1D

r 24 (6.16)

where L is the inductance in henrys per meter of line, m
0

5 4p 3 1027 H/m is
the permeability of free space, D is the distance between the two conductors,
and r is the radius of each conductor. Write a function that calculates the total
inductance of a transmission line as a function of its length in kilometers, the
spacing between the two conductors, and the diameter of each conductor. Use
this function to calculate the inductance of a 120-km transmission line with
conductors of radius r 5 2.5 cm and distance D 5 2.0 m.

6.13 Based on Equation (6.16), would the inductance of a transmission line increase
or decrease if the diameter of its conductors increases? How much would the
inductance of the line change if the diameter of each conductor is doubled?

6.14 Capacitance of a Transmission Line The capacitance per meter of a sin-
gle-phase, two-wire transmission line is given by the equation

 C 5
p«

ln1D2r
r 2

 (6.17)

where C is the capacitance in farads per meter of line, «
0

5 4p 31027 F/m is
the permittivity of free space, D is the distance between the two conductors,
and r is the radius of each conductor. Write a function that calculates the total
capacitance of a transmission line as a function of its length in kilometers, the
spacing between the two conductors, and the diameter of each conductor. Use

(x2, y2)(x1, y1)

(x6, y6)

(x5, y5)
(x4, y4)

(x3, y3)

Figure 6.7 An arbitrary polygon can be divided into a series of triangles. If
there are n sides to the polygon, then it can be divided into n 2 2 triangles.

30394_ch06_ptg01.indd 324 18/12/18 3:21 pm

6.9 Exercises | 325

this function to calculate the capacitance of a 120-km transmission line with
conductors of radius r 5 2.5 cm and distance D 5 2.0 m.

6.15 What happens to the inductance and capacitance of a transmission line as the
distance between the two conductors increases?

6.16 Use function random0 to generate a set of 100,000 random values. Sort this
data set twice, once with the ssort function of Example 6.2, and once with
MATLAB’s built-in sort function. Use tic and toc to time the two sort func-
tions. How do the sort times compare? (Note: Be sure to copy the original array
and present the same data to each sort function. To have a fair comparison, both
functions must get the same input data set.)

6.17 Try the sort functions in Exercise 6.16 for array sizes of 10,000, 100,000, and
200,000. How does the sorting time increase with data set size for the sort func-
tion of Example 6.2? How does the sorting time increase with data set size for
the built-in sort function? Which function is more efficient?

6.18 Modify function random0 so that it can accept 0, 1, or 2 calling arguments. If
it has no calling arguments, it should return a single random value. If it has 1 or
2 calling arguments, it should behave as it currently does.

6.19 As function random0 is currently written, it will fail if function seed is not
called first. Modify function random0 so that it will function properly with
some default seed even if function seed is never called.

6.20 Dice Simulation It is often useful to be able to simulate the throw of a fair die.
Write a MATLAB function dice that simulates the throw of a fair die by return-
ing some random integer between 1 and 6 every time that it is called. (Hint: Call
random0 to generate a random number. Divide the possible values out of ran-
dom0 into six equal intervals, and return the number of the interval that a given
random value falls into.)

6.21 Road Traffic Density Function random0 produces a number with a uniform
probability distribution in the range [0.0, 1.0). This function is suitable for sim-
ulating random events if each outcome has an equal probability of occurring.
However, in many events, the probability of occurrence is not equal for every
event, and a uniform probability distribution is not suitable for simulating such
events.

For example, when traffic engineers studied the number of cars passing a
given location in a time interval of length t, they discovered that the probability
of k cars passing during the interval is given by the equation

 Psk, td 5 e2lt

sltdk

k !
 for t $ 0, l . 0, and k 5 0, 1, 2,… (6.18)

This probability distribution is known as the Poisson distribution; it occurs
in many applications in science and engineering. For example, the number of
calls k to a telephone switchboard in time interval t, the number of bacteria k
in a specified volume t of liquid, and the number of failures k of a complicated
system in time interval t all have Poisson distributions.

Write a function to evaluate the Poisson distribution for any k, t, and l.
Test your function by calculating the probability of 0, 1, 2, … , 5 cars passing
a particular point on a highway in 1 minute, given that l is 1.5 per minute for
that highway. Plot the Poisson distribution for t 5 1 and l 5 1.5.

30394_ch06_ptg01.indd 325 18/12/18 3:21 pm

326 | Chapter 6 Basic User-Defined Functions

6.22 Write three MATLAB functions to calculate the hyperbolic sine, cosine, and
tangent functions:

 sinhsxd 5
ex 2 e2x

2
 coshsxd 5

ex 1 e2x

2
 tanhsxd 5

ex 2 e2x

ex 1 e2x

Use your functions to plot the shapes of the hyperbolic sine, cosine, and tan-
gent functions.

6.23 Compare the results of the functions created in Exercise 6.22 with the built-in
functions sinh, cosh, and tanh.

sinhsxd 5
ex 2 e2x

2
 coshsxd 5

ex 1 e2x

2
 tanhsxd 5

ex 2 e2x

ex 1 e2x

Use your functions to plot the shapes of the hyperbolic sine, cosine, and tan-
gent functions.

6.24 Write a MATLAB function to perform a running average filter on a data set, as
described in Exercise 5.19. Test your function using the same data set used in
Exercise 5.19.

6.25 Write a MATLAB function to perform a median filter on a data set, as described
in Exercise 5.20. Test your function using the same data set used in Exercise 5.20.

6.26 Sort with Carry It is often useful to sort an array arr1 into ascending order
while simultaneously carrying along a second array arr2. In such a sort, each
time an element of array arr1 is exchanged with another element of arr1,
the corresponding elements of array arr2 are also swapped. When the sort is
over, the elements of array arr1 are in ascending order, while the elements of
array arr2 that were associated with particular elements of array arr1 are still
associated with them. For example, suppose we have the following two arrays:

 Element arr1 arr2
 1. 6. 1.
 2. 1. 0.
 3. 2. 10.

After sorting array arr1 while carrying along array arr2, the contents of the
two arrays will be:
 Element arr1 arr2
 1. 1. 0.
 2. 2. 10.
 3. 6. 1.

Write a function to sort one real array into ascending order while carrying
along a second one. Test the function with the following two 9-element arrays:

a = [1, 11, -6, 17, -23, 0, 5, 1, -1];
b = [31, 101, 36, -17, 0, 10, -8, -1, -1];

6.27 The sort-with-carry function of Exercise 6.26 is a special case of the built-in
function sortrows, where the number of columns is two. Create a single
matrix c with two columns consisting of the data in vectors a and b in the pre-
vious exercise, and sort the data using sortrows. How does the sorted data
compare to the results of Exercise 6.26?

30394_ch06_ptg01.indd 326 18/12/18 3:21 pm

6.9 Exercises | 327

6.28 Compare the performance of sortrows with the sort-with-carry function cre-
ated in Exercise 6.26. To do this, create two copies of a 10,000 3 2 element array
containing random values, and sort column 1 of each array while carrying along
column 2 using both functions. Determine the execution times of each sort func-
tion using tic and toc. How does the speed of your function compare with the
speed of the standard function sortrows?

6.29 Figure 6.8 shows two ships steaming on the ocean. Ship 1 is at position sx
1
, y

1
d

and steaming on heading u
1
. Ship 2 is at position sx

2
, y

2
d and steaming on heading

u
2
. Suppose that Ship 1 makes radar contact with an object at range r

1
 and bear-

ing f
1
. Write a MATLAB function that will calculate the range r

2
 and bearing f

2

at which Ship 2 should see the object.
6.30 Linear Least-Squares Fit Develop a function that will calculate slope m and intercept

b of the least-squares line that best fits an input data set. The input data points (x,y) will
be passed to the function in two input arrays, x and y. (The equations describing the
slope and intercept of the least-squares line are given in Example 5.6 of Chapter 5.)
Test your function using a test program and the following 20-point input data set:

Ship 2
(x2, y2, �2)

Ship 1
(x1, y1, �1)

Object

r2

r1
�1

�2

Figure 6.8 Two ships at positions sx1, y1d and sx2, y2d, respectively.
Ship 1 is traveling at heading θ1, and Ship 2 is traveling at heading θ2.

Sample Data to Test Least-Squares Fit Routine

No. x y No. x y

1 24.91 28.18 11 20.94 0.21
2 23.84 27.49 12 0.59 1.73
3 22.41 27.11 13 0.69 3.96
4 22.62 26.15 14 3.04 4.26
5 23.78 26.62 15 1.01 6.75
6 20.52 23.30 16 3.60 6.67
7 21.83 22.05 17 4.53 7.70
8 22.01 22.83 18 6.13 7.31
9 0.28 21.16 19 4.43 9.05

10 1.08 0.52 20 4.12 10.95

30394_ch06_ptg01.indd 327 18/12/18 3:21 pm

328 | Chapter 6 Basic User-Defined Functions

6.31 Correlation Coefficient of Least-Squares Fit Develop a function that will cal-
culate both the slope m and intercept b of the least-squares line that best fits
an input data set, and also the correlation coefficient of the fit. The input data
points (x,y) will be passed to the function in two input arrays, x and y. The
equations describing the slope and intercept of the least-squares line are given in
Example 5.1, and the equation for the correlation coefficient is

 r 5
n _ox y+ 2 _ox+ _oy+

Îf_nox2+ 2 _ox+2g f_noy2+2_oy+2g
 (6.19)

where
 Sx is the sum of the x values
 Sy is the sum of the y values
 Sx 2 is the sum of the squares of the x values
 Sy 2 is the sum of the squares of the y values
 Sxy is the sum of the products of the corresponding x and y values
 n is the number of points included in the fit

Test your function using a test driver program and the 20-point input data set
given in the previous problem.

6.32 Create a function random1 that uses function random0 to generate uniform ran-
dom values in the range [21, 1). Test your function by calculating and displaying
20 random samples.

6.33 Gaussian (Normal) Distribution Function random0 returns a uniformly dis-
tributed random variable in the range [0, 1), which means that there is an equal
probability of any given number in the range occurring on a given call to the func-
tion. Another type of random distribution is the Gaussian distribution, in which
the random value takes on the classic bell-shaped curve shown in Figure 6.9. A
Gaussian distribution with an average of 0.0 and a standard deviation of 1.0 is
called a standardized normal distribution, and the probability of any given value
occurring in the standardized normal distribution is given by the equation

 psxd 5
1

Ï2p
 e2x2 /2 (6.20)

It is possible to generate a random variable with a standardized normal distri-
bution starting from a random variable with a uniform distribution in the range
[21, 1) as follows:

1. Select two uniform random variables x
1
 and x

2
 from the range [21, 1) such

that x
1
2 1 x2

2
, 1. To do this, generate two uniform random variables in the

range [21, 1), and see if the sum of their squares happens to be less than 1.
If so, use them. If not, try again.

2. Then, each of the values y
1
 and y

2
 in the following equations will be a nor-

mally distributed random variable.

30394_ch06_ptg01.indd 328 18/12/18 3:21 pm

6.9 Exercises | 329

 y
1

5Î22ln r
r

 x
1
 (6.21)

 y
2

5Î22ln r
r

 x
2
 (6.22)

where r 5 x
1
2 1 x

2
2 (6.23)

Write a function that returns a normally distributed random value each time
it is called. Test your function by getting 1000 random values, calculating the
standard deviation, and plotting a histogram of the distribution. How close to
1.0 was the standard deviation?

 6.34 Compare the Gaussian distribution function generated by the function created in
Exercise 6.33 with the built-in MATLAB function randn. Create a 100,000-ele-
ment array with each function, and create a histogram of each distribution with
21 bins. How do the two distributions compare?

 6.35 Gravitational Force The gravitational force F between two bodies of masses m
1

and m
2
 is given by the equation

 F 5
Gm

1
m

2

r2
 (6.24)

where G is the gravitation constant (6.672 3 10211 N-m2/kg2), m
1
 and m

2
 are the

masses of the bodies in kilograms, and r is the distance between the two bodies.
Write a function to calculate the gravitational force between two bodies given
their masses and the distance between them. Test your function by determining
the force on an 800 kg satellite in orbit 38,000 km above the Earth. (The mass
of the Earth is 6.98 3 1024 kg.)

Normal Distribution

Value

Pr
ob

ab
ili

ty
 o

f
oc

cu
rr

an
ce

0.4

0
24 22 0 2 4

0.1

0.2

0.3

Figure 6.9 A normal probability distribution.

30394_ch06_ptg01.indd 329 18/12/18 3:21 pm

330 | Chapter 6 Basic User-Defined Functions

 6.36 Rayleigh Distribution The Rayleigh distribution is another random number
distribution that appears in many practical problems. A Rayleigh-distributed
random value can be created by taking the square root of the sum of the squares
of two normally distributed random values. In other words, to generate a
Rayleigh-distributed random value r, get two normally distributed random val-
ues (n

1
 and n

2
), and perform the following calculation:

 r 5 Ïn
1

2 1 n
2

2 (6.25)

(a) Create a function rayleigh(n,m) that returns an n × m array of
Rayleigh-distributed random numbers. If only one argument is supplied
[rayleigh(n)], the function should return an n × n array of Rayleigh-
distributed random numbers. Be sure to design your function with input
argument checking and with proper documentation for the MATLAB help
system.

(b) Test your function by creating an array of 20,000 Rayleigh-distributed ran-
dom values and plotting a histogram of the distribution. What does the dis-
tribution look like?

(c) Determine the mean and standard deviation of the Rayleigh distribution.

30394_ch06_ptg01.indd 330 18/12/18 3:21 pm

