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Physics Lab Manual 2012 
 
Welcome to the Physics lab program. The labs you’ll be doing this year have been designed to teach you good lab 
technique while giving you direct experience with the phenomena you’re studying in the course. Your syllabus 
will show you what labs to do as well as when to do them. It’s important that you follow that schedule. The labs 
are an integral part of the learning experience and they are essential to a good score on your exams. 
 
Hopefully you’ll enjoy working with this virtual apparatus. It was all programmed by Nathan Pinney, Brian 
Vincent, and Tim Martin who were my teaching assistants in 2006-07, 2007-09, and 2011-12, respectively. 
 
The virtual labs live on a separate website which you can reach in one of two ways. 

• Browse to www.virtuallabs.ket.org/physics. Your regular course id and password will work there too. 
• If you happen to be logged in on the course web site there is a “Labs” button next to the “Mail” button which 

will take you to the lab website. You’ll have to log in again. 

Feel free to visit the lab and mess around with the apparatus. You can’t hurt it. You can also use it on your own to 
help you understand some of the phenomena we’ll be studying. 

 
You’ll use this manual in three ways.  

1. You’ll use it as a lesson to work your way through before you do your first lab. There are a number of 
activities contained in it and. You should work through all of them. Plan on a couple of hours for this. 

2. You’ll use it as a reference when you’re asked to do certain things in the lab. For example you’ll be asked 
to find percentage errors. That’s explained in section 1.4, and you’ll learn (or review) that calculation 
when you study that section. 

3. You’ll use it to learn how to use the Logger Pro software. Make sure that it’s installed on any 
computer that you plan to use. Your facilitator has a CD with the software on it. And you have a site 
license. You can even install it at home. 

 
There’s a lot of information in this document. Don’t panic. You’ll come to understand it better as the course 
progresses. 
 
 

Will this be on the test? 
This course is designed to help you learn a number of concepts and techniques that will help you understand and work 
with the physical world. The videos and on-line lessons, the labs, and the homework work together to that end. You can 
expect to find test questions from all three of these.  
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Are you a PC or a Mac? 
The lab apparatus and Logger Pro software will run on either a Windows or Mac computer. But the two sometimes 
handle things different things differently. Here’s one to be on the lookout for. 

Windows computers have at least two mouse buttons. – a left and a right, and sometimes a middle one. 
If you’re told to click on something, this means to move your pointer over it and click with the left button. 

We’ll say right click when we mean to use the right one. Usually a right click brings up a menu of choices to select 
from. 

Some Macintosh computers have just one button. It’s equivalent to a regular (left) click. A ctrl-click (holding down the 
control key and clicking is equivalent to a right click.  
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Introduction 
As you’ll discover in this course, physics is about things that happen. 

• A baseball is hit and travels along an arc or along the ground and the fielder has to get to the right place at the 
right time to catch it.  

• Billiard balls collide at various angles and you can somehow predict which way they’ll go.  
• The tea I’m making right now will melt most of a glass of ice if I don’t wait five minutes before I pour it in.  
• The length of time between phone recharges depends on the screen brightness, amount of use, etc.  
• The damaging effect of light depends on how much of various wavelengths are involved.  

We’d describe these events in terms of distances, angles, times, temperatures, current and voltage, and wavelength and 
other quantities. In the lab we’ll find out how these and other quantities are related by qualitative observations (“it’s a 
very high fly ball”), measurement (“the tea has cooled a bit, I’ll need less ice”), and mathematical description (“power × 
time = energy, so maybe I’ll get to talk longer between charges if I get a bigger battery.”) 

Let’s look at some of the tools of the trade that help us make sure that our lab work that’s up to code. 

1. – Errors and Uncertainty 
Scientific Error is not a bad thing. When we refer to error it’s just another term for uncertainty. 

The measurements you make in the laboratory should be made as accurately as possible. The numbers you record, with 
appropriate units, express the amounts of your measurements as well as their uncertainties (error). (We often use the 
terms uncertainty and error interchangeably.) This lab manual will introduce you to the techniques we’ll use to 
accomplish this. The methods of error analysis and even the definition of key terms found in the literature vary 
considerably. In future courses you may be introduced to more sophisticated error analysis. 

1.1 – Types of Error 
Our measurements are limited in two ways – instrument limitations and random uncertainties or random errors.  

Instrument limitations:  Our measuring devices have limits to how finely they can divide up a quantity. The finest 
graduation on a meter stick is a millimeter. We can use it to measure to within some fraction of a millimeter, but not 
beyond. We would say that 1 millimeter is the resolution of a standard meter stick. If we removed the millimeter marks, 
leaving centimeter graduations we would decrease its resolution to one centimeter. Thus we would reduce its resolution 
by a factor of ten. 

Random (indeterminate) errors:  When you measure the length of an object with a meter stick you have to judge 
when the object and meter stick are aligned properly, which points on the meter stick align with each end of the object, 
etc. If you made the same measurement several times you’d get slightly different results, ranging by some amount either 
side of some central value. This type of random variation is inherent in any measurement, but the average of many such 
measurements would be a good indication of the “correct” value. 

What about human error? This is not actually a scientific term. The two types of limitations mentioned above are 
normal parts of any scientific measurement and we can deal with them in standard ways as you’ll see. But “I didn’t 
realize that I was using a yardstick and not a meter stick” is just a mistake. We’d deal with it by repeating the 
experiment with the proper tool. So just eliminate that term “human error” from your scientific vocabulary. 

1.2 – Precision and Accuracy 
To its extreme embarrassment, precision’s definition varies according to the context of its use. In physics we generally 
use the term in two ways. 

1. Precision is the degree of agreement among several measurements of the same quantity; the closeness of repeated 
measurements to the same value; the reliability or reproducibility of a measurement. 

Note that precision is unrelated to the correctness of a measurement. If you shoot at a target several times and all the 
arrows are close together you’re a precise shooter. If the arrows are actually in the wrong target, you’re a precise but 
inaccurate shooter. 
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You may see precision expressed like this: 2.04 ± .05 m. This would indicate that your average value for several 
measurements was 2.04 and that the measurements were spread over a range between 1.99 m and 2.09 m. So you feel 
confident that any subsequent measurement would fall into that range. A less precise measurement of the same object 
might be written as 2.04 ± .1m. And 2.04± .02 m would be more precise. 

2. Precision is the measure of how exactly a measurement is made; the number of significant digits to which it can be 
measured reliably. 

According to a plastic ruler a nickel is about 2.10 cm in diameter. If I used a device called a Vernier caliper I can 
measure more precisely where I might find the diameter to be 2.096 cm. The extra digit indicates the greater precision 
of the instrument being used. 

In our work the term usually refers to the second definition. We also use the term resolution when using this definition. 
A plastic school protractor might measure angles to a few tenths of a degree, while a sophisticated scientific tool might 
measure to thousandths of a degree. Similarly a photo taken by a satellite passing over Mars might have a resolution of 
10 meters. This means that the light from a 10m × 10m area on Mars illuminates just one pixel on the digital camera’s 
light-gathering chip. So if the light from that area is reddish on average, the pixel will be reddish. A similar effect is 
found with your eyes. As you approach a distant object the image spreads over a larger area on your retina, increasing 
the resolution of the image, letting you resolve smaller objects. 

Ex. “I see beach.” “Now I see sand.” “Now I see that the sand is multicolor and jagged.” 

Closely related to precision is accuracy. Accuracy is the degree of closeness of a measured or calculated quantity to its 
actual (true) value; the extent to which the results of a calculation or the readings of an instrument approach the true 
values of the calculated or measured quantities. 

The results of calculations or a measurement can be accurate but not precise, precise but not accurate, neither, or both.  

This may be better understood by an analogy. Consider several attempts by a marksman to hit a bull’s eye. If the bullets 
all hit in a tight pattern we’d say that the shooting is very precise. This would be true even if the tight cluster is far from 
the bull’s eye. 

If that tight cluster was centered on the bull’s eye we’d say that the shooting was both precise (definition 1) and 
accurate. 

If the cluster was not so tight, but still centered on the bull’s eye, we would say that the shooting was accurate, but not 
precise. 

We won’t be doing any shooting in the lab, but we will be making multiple measurements of quantities. If our repeated 
measurement of a quantity are nearly the same (precise) and approximately equal to the “correct” value (accurate), we’d 
say that our measurements are both precise and accurate. A result is called valid if it is both accurate and precise. 

Incidentally, the shooter whose bullets hit in a tight cluster away from the bull’s eye would be said to have a systematic 
error in his shooting. What would the judges in that event have to say about this? “Sorry buddy, we don’t forgive the 
‘human error’ of the choice of an inadequate weapon, or the improper adjustment or use of the gun sight.” You lose. 

Systematic errors are not related to uncertainty. They indicate that you’ve done something incorrectly and need to 
correct the source of the error and retake your data. For example, if you were weighing liquids in a beaker and forgot to 
subtract the weight of the beaker all your values would be offset by an amount equal to the weight of the beaker. 

1.3 – Uncertainty of Measurement 
All scientific measurements are made by comparison to some accepted standard. The length of the spine of a book is 
compared to markings on a standard meter stick; the time for a ball to fall some distance is compared to the seconds 
ticked off on a stopwatch, etc.  

When I asked a visitor to my house how tall he was he responded “2 meters, 4 centimeters.”  Was this tall Scandinavian 
exactly 2.04 m tall? Who knows? He was just really tall and that’s all that we were curious about. 

But as a scientific measurement 2.04 meters means something very specific. If we measured the distance that a rock had 
fallen to be 2.04 m, this value would mean that we know it fell some distance between 2.00 m and 2.10 m and that the 
4 cm is our best guess of the final digit. We will always use this system when we take data. 
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You should always measure as many digits as you can with certainty and then estimate one more digit. 

For a typical length measurement in the lab we can measure to a much higher resolution. A meter stick has millimeter 
markings on it. Let’s measure the length of the spine of a book with the section of meter stick shown below. Our 
measured length would be the difference in the right and left measurements. The left measurement is between 6.1 cm 
and 6.2 cm. We need to estimate one more digit. Let’s say 6.14 cm. Our uncertainty is due to our inability to resolve 
tenths of millimeters. It’s also compounded by the curve of the spine and the separation between the book and the ruler. 
The other end seems to be between 12.7 and 12.8. We’ll estimate 12.72 cm. 

We’ll record the book’s length as (12.72 – 6.14) cm = 6.58 cm. Note that our answer gives the magnitude of our 
measurement as well as an indication of the uncertainty of our measurement. We are confident to within .1 cm. 

 

 

 

 

Figure 1  
There are many more sophisticated ways of expressing and calculating uncertainty. You may encounter them if you 
continue in your scientific studies. Let’s quickly look at one that you may be familiar with before we proceed. (We 
won’t use this method.) 

Returning to Lars’ height, we could go one step further and state how certain we are about that last digit. As you know, 
measuring a person’s height is pretty uncertain given the squishiness of hair and the difficulty of getting the mark on the 
wall just right. So on a good day, you’d be happy with getting within a centimeter. So you might give Lars’ height as 
2.04 ± .01 m. (value ± uncertainty) The ± .01 indicates that you are confident to within .01 m 

Beyond this lies statistical analysis using standard deviations and partial derivatives for the calculus students among 
you. Again, we won’t use these methods. 

Significant Digits (Figures) 
In the two examples above the uncertainty of our measurements (hundredths (2.04 m) and ten-thousandths of a meter 
(6.58 cm)) has been clearly indicated by the digits we recorded. This is standard practice and you’ll always use this 
system in your lab work. All you do is write down every digit you measure, including an estimated digit and you’re 
done. These measured digits are referred to as significant digits. There is a bit of confusion involving zeros since a zero 
can indicate either a measured value (significant) or be placeholders (non-significant.) So let’s look at how we deal with 
them. 

Identifying significant digits 
Rule 1. Non-zero digits are always significant. 

Ex. 3.562 m – all four digits are significant. 

Rule 2. Embedded zeros are always significant. 
Ex. 2.05 cm – you measured the zero, so it’s certainly significant. This measurement has three significant digits. 

Rule 3. Leading zeros are never significant. 
Ex. 0.0526 m – just three digits are significant. 

Leading zeros are just place-holder digits. If you measured 0.0526 m in centimeters you’d write 5.26 cm. The 
units used should not change the number of significant digits. This number has three significant digits. 

Rule 4. Trailing zeros are always significant. This is where it gets tricky. Look at the following three scenarios 
to see why. 

Ex. 4.570 m – the zero comes to the right of a decimal point 
You wouldn’t include the zero unless you measured the last digit as a zero since 4.57 m is the same amount 
as 4.570 m. So you only needed to include the zero to indicate the uncertainty of the measurement. 

Ex. 4570 m – all four digits are significant since you measured three and estimated the zero. 
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In this case you measured the 4, then the 5, then the 7, and then estimated that the last digit was zero. 
It’s no different than, say, 4572. The last digit was the estimated digit and just happened to be zero. 

 
Ex. 4570 m, but you measured the same object but with a different instrument with less precision. 

So it’s the same size measurement as the previous example, but the seven was the estimated digit. And 
the zero is just a placeholder. So you really have only three significant digits. 
Well rules are rules. If that trailing zero is not significant, you have to get rid of it. Here’s how. If you need 
some trailing zeros for placeholders, use scientific notation or metric prefixes instead. 

Solution 1. 4.57 × 103 m 
Solution 2. 4.57 km 

Significant figures in the result of a calculation 
In addition to making measurements to the proper precision we also have to attend to significant digits when making 
calculations. There are basically two situations to be concerned with. Here’s an example of each. Calculate what you 
think the answers are. We’ll return to these questions shortly. 

Ex. 1 Suppose you measured the inner diameter of a pipe to be 2.522 cm and the length to be 47.2 m. What would you 
list as its internal volume? ___________ m3. 

Ex. 2 A truck that weighs 32,175 pounds when empty is used to carry a satellite to the launch pad. If the satellite is 
known to weigh 2,164.015 pounds what will the truck weigh when loaded? _______________ pounds 

Multiplication, division, roots and powers 
After any of these operations, round the result off to the fewest significant digits possessed by any of the 
numbers in the calculation. 

Ex. 2.53 × 1.4 → 3.542 on the calculator 
1.4 has the fewest significant digits (2). So we use 2 significant digits in our answer 
Answer: 3.5 

Addition and subtraction 
Before adding or subtracting, round each number to the uncertainty of the least certain number. Then add or 
subtract and keep the common uncertainty. 

Ex. 2.53 + 1.4 → 2.5 + 1.4 
 2.53 → 2.5 
 1.4 → 1.4 
   3.9 

Notice that in the first case (×, ÷, etc.), we were counting sig. figs. In the second we were rounding to the least certainty. 
We won’t discuss why this happens here. Just be aware of that key difference. 

Now re-try example 1 above. Note that there’s more than one calculation to make. Just do the rounding at the end of the 
calculation.  (V = π r2 h = π (2.522/2 cm)2 (4.72×103 cm) = 23578.8 cm2,  

but we just get 3 digits so V = 2.36×104 cm2 

Now re-try example 2 above. (32,175 + 2,164.015) lb =  32,175 →  32,175 
  2,164.015 → 2,164 
    34,339 lbs 

Rounding 
In both cases above we needed to round numbers, which involved removing trailing digits. There are different 
conventions for doing this. Here’s how we’ll do it. 

Suppose we want to round to n significant digits. 

Rule 1: If the digit immediately to the right of the nth digit is less than 5, the number is rounded down. 
Ex1. Rounding 2.434 to 2 significant digits becomes 2.4 after dropping 34. 

Rule 2: If the digit immediately to the right of the nth digit is greater than 5, the number is rounded up. 
Ex2. Rounding 2.464 to 2 significant digits becomes 2.5 after dropping 64. 
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Rule 3: If the digit immediately to the right of the nth digit is 5 and there are non-zero digits after the 5, the 
number is rounded up. 

Ex3. Rounding 2.454 to 2 significant digits becomes 2.5 after dropping 54. 

Rule 4: If the digit immediately to the right of the nth digit is 5 and there are no subsequent non-zero digits, 
round the number in whichever direction leaves the nth digit even. 

Ex4a. Rounding 2.450 to 2 significant digits becomes 2.4 after dropping 50. 
The result was left as 2.4 since 2.450 is closer to 2.4 than 2.6. 

Ex4b. Rounding 2.550 to 2 significant digits becomes 2.6 after dropping 50. 
The result was increased to 2.6 since 2.550 is closer to 2.6 than 2.4. 

 

1.4 – Percent Error and Percent Difference 
In the lab we will often try to determine the value of some “known” or theoretical quantity – the speed of light in a 
vacuum, the wavelength of light given off by an electrical discharge through a certain gas, or the acceleration of an 
object falling without friction. One way of comparing our experimental result with the theoretical value is 
calculating a percent error between the theoretical and experimental value. 

The error between the theoretical and experimental values is just the absolute value of their difference. 

𝐸𝑟𝑟𝑜𝑟 = |𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙 − 𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙| 

We can get a better measure of the significance of our error by comparing it to the theoretical target value. We can do 
this by calculating a percent error. 

𝑃𝑒𝑟𝑐𝑒𝑛𝑡 𝐸𝑟𝑟𝑜𝑟 =  
|𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙 − 𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙|

|𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙|
 × 100% 

 
Ex. The accepted value for the acceleration due to gravity is 9.82 m/s2 at a certain location. In the lab a student measures 
it as 9.91 m/s2. 

𝐸𝑟𝑟𝑜𝑟 =  |9.82 − 9.91| 𝑚/𝑠2= .09 𝑚/𝑠2  

𝑃𝑒𝑟𝑐𝑒𝑛𝑡 𝐸𝑟𝑟𝑜𝑟 =  
. 09𝑚/𝑠2

9.82𝑚/𝑠2
 × 100% = .916% 

The error doesn’t mean much by itself. But by comparing it to the theoretical value of 9.82 we give it context. 
Calculating the percentage error tells us how big the error was relative to the amount of the measurement. A 1% error 
would mean that the student was off by 1 part in 100, so .916% is a bit less than that.  

Sometimes we will want to compare two values for the same quantity when neither is known to be more certain than the 
other – the distance to a distant wall found with a meter stick and by sound reflection for example. In this case we can 
calculate a percent difference. 

𝑃𝑒𝑟𝑐𝑒𝑛𝑡 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 =  
|𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡2 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡1|

|𝑎𝑣𝑒𝑟𝑎𝑔𝑒|
 × 100% 

Ex. The speed of sound is determined in two different ways, once by measuring the time for a sound to bounce off a 
nearby building, and then by setting up standing waves in a tube. The two results are 318 m/s, and 340.6 m/s. While the 
second is measured to greater precision, we have no way of knowing how accurate either result is. 

𝑃𝑒𝑟𝑐𝑒𝑛𝑡 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 =  
|318 − 340.6|

| 318 + 340.6
2 |

 × 100% = 6.86% 
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2.0 – Graphical Analysis 

In sections 2.0 – 2.15 many examples of the use of Logger Pro will be illustrated. It is essential that you do every 
example as it’s presented. You will be using all these techniques frequently this year, so it’s crucial that you learn the 
process now. 

Much of what we do in physics involves finding relations between quantities. These relations are best described using 
mathematical models – equations that relate the quantities. E.g. Speed = distance/time.  Probably the most well-known 
and important such mathematical relation involves pizza. Years of study in the laboratory has determined that doubling 
the diameter of a circular pizza quadruples its area. The inability of consumers to unravel this relation, thus allowing 
them to understand the pricing, is surely the reason why pizza is generally sold in a circular rather than square shape. 
(Well, there is the difficulty of tossing a square pizza crust.)  Consider this NCLB exam question: 

Pizza A is 6” in diameter and costs $4.67. Pizza B is 9” in diameter and costs $6.21 

a) Pizza A is the better buy. 
b) Pizza B is the better buy. 
c) Both prices are equivalent. 
d) Pizza B is bigger so it’s a better buy. 
e) It depends on the number of slices. 

In my experience answer (e) is the universal answer. Let’s get to the bottom of this. 

The key question is “how is the area related to the diameter?” A mathematical model, an equation summarizing the 
relationship, is what we need. Here’s how we’d go about it. 

1. Go buy a bunch of pizzas. Check. 

2. I’ve already done the heavy lifting for you. Here’s the data as I took as I consumed the, err, “apparatus.” 

Pizza Diameter 
(in) 

Area (in2) By convention, the independent variable is listed on the left and the 
dependent variable is listed on the right. In this case, determining 
which is which is a bit iffy. In most cases it’s clearer – the distance a 
car travels varies with time so time is the independent variable and 
the distance follows. Since we want to think about how the area 
depends on the diameter we’ll consider the diameter to be the 
independent variable. 
In a controlled experiment, which is our goal, any other potential 
variables must be held constant. 

1 2.11 3.14 
2 3.94 12.6 
3 5.82 28.3 
4 9.15 63.6 
5 10.02 78.5 
6 12.25 113.1 
7 13.84 154.0 
8 16.01 201.1 
9 20.14 314.2 

3. Make a table of area vs. diameter in Logger Pro. Here’s how. 

Open Logger Pro. 
Double-click on the “X” column heading of the data table. 
This will bring up the Labels and Units requester. Fill it in as shown. 
Click “Done.” 
Repeat for the “Y” column. Enter “Area”, “A”, and “in2”. 
To insert “in2”, type “in”, and then click the down arrow, choose 
“Superscript” and then “2.” 
Populate your table with the values in the table above. 

 

 
Figure 2 
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4. Plot area vs. diameter. 

As you enter your data, Logger Pro will automatically plot it. The graph below is what we want for our finished 
product. Your graph shouldn’t look much like this yet. Here’s a description of what you want, followed by how to 
achieve it. 

 
Figure 3 

The dependent variable is plotted on the vertical (ordinate) 
and the independent variable is plotted on the horizontal 
(abscissa). 
The graph should 

• include a title that describes the experiment. 
• fill the allotted space. 
• be properly scaled. The scale of each axis should be 

uniform and linear. 
• start at zero on each axis. 
• include axes labeled with the name and unit for the 

quantity plotted. 
• include carefully plotted data points surrounded by 

point protectors. 
a) If the data is non-linear, draw a smooth curve indicating the tendency of the data as shown above. If 

the data is non-linear you will usually need to linearize it to find the correct relationship as 
discussed below. 

b) If the data appears to be linear, include a line of best fit indicating the tendency of the data. The 
data points should never be connected by straight line segments. 

c) It is not important to hit any of the data points exactly. This includes the (0, 0) point. The line or 
curve is a sort of averaging of the data. 

d) When determining the slope of a linear graph by hand, include a pair of points on the line used in 
making the calculation. These should not be data points unless they happen to be on the line. 

e) Do not do calculations on your graph. 

Here’s how we’ll achieve this finished look (with the exception of the curve.) 

a) Once the data table is complete, double-click on the graph. Below “Title:” enter “Area vs. Diameter 
(Pizza)” 

b) Click on the “Autoscale Graph” icon.  The data points will fill the space. 

c) If either axis doesn’t start at zero, click on the lowest number shown on that axis and change it to 0. 
 

When I created this graph I found the lowest number 
shown on the x-axis to be 5 and that the x-axis actually 
started at 2. 

 

          Figure 4a 

When I clicked 5, 2.000 appeared. 
           Figure 4b 

When I changed the 2 to 0, I got the graph shown     Figure 4c 

d) The axes will automatically match the data table. If you ever want to change these values, just 
change the data table as explained earlier. 

e) To see the data with point protectors, , and no connecting lines, double-click on the graph. Under 
“Appearance:” check “Point Protectors” and uncheck “Connect Points.” You’ll always want to do this. 

f) Your data is best summarized by your smooth curve or line of best fit. So once you create a line or 
curve, the data is no longer of any importance. To find the slope of a line by hand, pick two points on 
the line, as far apart as possible, and calculate the Δy/Δx. The slope should include units. 
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5. Determine an equation relating area and diameter. 

This can be done in one of two ways using Logger Pro. You should use the first method, linearizing the data in your 
labs. You may find that Method 2, using Logger Pro’s built-in curve fitting to be a good check of your results. It can 
also be used to draw your smooth non-linear curves. 

Figure 5            
Method 1 (general description) – Linearize data (Use this method for your lab reports.) 

a) Create a new data table column. Have Logger Pro populate the column by raising the values in one 
of the initial columns to a power or root or some other function. In this example we’ve squared all 
the independent values and inserted them in the new column. 

b) Re-plot with this new data to see if a straight line is achieved. If not, repeat a. 
c) Select a linear region of the graph by dragging across it. See brackets [] on graph. 
d) Click the linear fit icon.  

Logger Pro will automatically calculate the slope and y-intercept of the line of best fit using least-
squares fit calculation. 

e) Write the equation in y = mx + b form. 
y: ordinate value   x: abscissa value   m: slope   b: y-intercept 

f) A = (.78 d2 + .39) in2 

Here’s a detailed explanation of linearizing data with Logger Pro. You’ll do this a lot in the lab, so pay attention 
to all the details. 

a) To create your new data column, click on “Data” in the menu at the top of Logger Pro. Select “New 
Calculated Column” from the list. Fill in the requester as follows. 
Name: “Diameter Squared”     Short Name: “D2” (again using down arrow for 2.)     Units: “in2” 
You now want to populate this column with the square of each value in the diameter column. 
Under “Equation:” in the same requester panel, 
     click the Variables button and select “Diameter”. Note: The quotes are actually required here. 
     type “*” (no quotes), then select “Diameter” again. I don’t know why there’s no square function. 
You should now have “Diameter”*”Diameter”. Click “Done” and you’ll have your new column. You may 
have to scroll to the right to see it or you can expand the data table area by dragging its border. 

b) You want to plot Area vs. Diameter Squared. Click the horizontal graph label, “Diameter (in)” and a list 
of other x-values appears. You should see Diameter, Area, Diameter Squared and More. Pick Diameter 
Squared. Autoscale and you’ll have a nice straight line. 

c) This graph should all look pretty linear, so do something like this: Click anywhere inside the graph on 
the left side and drag to another point on the right side. A gray box should be created as you do this. 

d) Click the linear fit icon.  You should see something like the graph above. 
e) Write the equation in y = mx + b form. 

y: ordinate value (A)   x: abscissa value(d)   m: slope   b: y-intercept 
f) A = (.78(in2/ in2) d2 + .39) in2          Not y = (.78 x2 + .39) in2      
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Figure 6 

Method 2 – Automatic curve fit to a function. 
(You may use this to verify your equation from 
method 1.) Change the x-axis back to 
Diameter(in). 
a. Select a region of the graph by dragging across 

it. See brackets []. 
b. Click the curve fit icon.  
c. Test the various general equations provided 

until you find one that produces the best curve 
to fit the data. Do this by selecting a general 
equation and then clicking “Try Fit.” 

d. Write the equation: 
A = (.81 d2 - .57 d - .39)  in2 

2.1 – Interpreting Graphs 
In the pizza example we found this relation: 

𝐴 =  .78 𝑑2 +  .39 

Let’s look at the two constants m and b. Calculating 4 × m gives you 3.12 which looks a lot like π. Recalling that the 
area and diameter of a circle are related by 

𝐴 = 𝜋 𝑟2 =
𝜋𝑑2

4
 

explains where the .78 came from. It’s approximately π/4. 

What about b, the y-intercept? Clearly a pizza of zero-diameter should have zero area. This tiny bit of pizza (.39 in2) is 
just a bit of random error. Random pizza? As we’ll see soon, this y-intercept will often have real physical meaning. 

What we’ve found here is a common proportional relation – a quadratic proportion. While there are a huge number of 
possible relations, we’ll find only a handful in elementary physics. In some of our labs and course lectures we’ll be 
using a graphical approach to find or verify these relations, so let’s learn to recognize the ones that are likely to come 
up. 

2.1.1 – No Relation 

Don’t forget. You need to create all these graphs as you study this document. You’ll be making your own soon. 

The time for a satellite to orbit a massive body is referred to as its period, T. This time depends on a number of factors. 
Surprisingly one of these is not the satellite’s mass. The following table illustrates what you might find for a satellite in 
low earth orbit. The period is not found to vary for satellites of different masses. Note that the correlation coefficient is 
0, which means no correlation. A perfect correlation would have a coefficient of 1.0. (See pizza graph.) 

Although we do find a straight-line graph, the graph has no slope, indicating that the period does not change with mass. 
There is no relation between the mass and the period. Although there was no relation, we still had an independent 
variable, the mass, so it was plotted on the x-axis. What would the graph look like if we reversed these roles? 
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Figure 7  
 

2.1.2 – Linear Relation with a y-intercept 
An elastic object is one that stretches or compresses in a particular way (up to a point called the elastic limit) as 
increasing amounts of force are applied to it. A spring is a good example. A rubber band is not so good an example as 
its behavior changes as it’s stretched by increasing amounts. 

Consider a spring hanging vertically.  If an object weighing one newton (about .225 pounds) is attached to the spring’s 
lower end it will exert a downward force of one newton on the spring. The mass will vibrate for a while. Once it comes 
to rest, the spring will have a new length. The table below indicates this change in the spring’s length as more weight is 
added. 

 

 

 

 

 

 

 

Figure 8  

 
The spring is initially 12.8 cm long and increases steadily in length as weight is added. When we plot length vs. weight 
we get a straight line indicating a linear relation between length and weight. In a linear relation the dependent variable 
changes by a fixed amount for a fixed change in the independent variable. 

Ex. A plot of fangs vs. snakes (for normally equipped snakes) would increase by 2 fangs for every snake added. 

The graph indicates this relation by rising at a constant rate; that is, it has a constant slope. In our example, a slope of 
3.337 cm/N indicates that the length of the spring increased by about 3.337 cm for each newton of weight added. You’d 
want to use 3.3 cm/N. Why? 

Note that the slope can also be negative for a linear relation. For example an employee’s salary vs. time might be 
defined by a rising straight line while the distance to her assigned parking space could decrease yearly resulting in a 
falling linear relation. 

The y-intercept also has physical meaning. It’s just the initial length of the spring before we began adding weights. Our 
equation that models this spring’s stretchy behavior is 

𝐿𝑒𝑛𝑔𝑡ℎ = 3.3
𝑐𝑚
𝑁

× 𝑊𝑒𝑖𝑔ℎ𝑡 + 12.9 𝑐𝑚 
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Very nice! It sums up all the data in our graph plus everything outside it up to the elastic limit. A very tidy and efficient 
little package! If we kept adding weights until the spring began to distort, we’d find that the graph would start to bend 
toward the horizontal. So our equation works only within the spring’s elastic range. 

By the way, who cares? 
This might be a time to discuss this burning question. Assuming that it’s useful to be able to predict the length of a 
spring for example in designing cars, playground equipment, or whatever, what we’ve just done is really impressive. 
We’ve added some masses to the end of a spring and then gone from table → graph →equation. The equation is now 
something that we can carry around in our head that is a perfect model of the behavior of the spring. Think about it! 

2.1.3 – Direct Proportion 
If we rearrange the equation a bit we find an equation that gets more to the heart of the stretchy behavior of the spring. 
Subtracting the y-intercept, which is just the spring’s initial length, from both sides gives us 

𝐿𝑒𝑛𝑔𝑡ℎ − 𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝐿𝑒𝑛𝑔𝑡ℎ = 3.3
𝑐𝑚
𝑁

 𝑊𝑒𝑖𝑔ℎ𝑡 
or 

𝑆𝑡𝑟𝑒𝑡𝑐ℎ = 3.3
𝑐𝑚
𝑁

 𝑊𝑒𝑖𝑔ℎ𝑡 
To produce this equation directly from Logger Pro we can add a new calculated column labeled “Stretch” which is 
calculate from “Length” – 12.9 cm. Try it. 

Notice how you can have two quantities plotted on the y-axis. Here’s how it works. Click on the y-axis label “Length 
(cm).” Select “More.” Check the “Stretch” box. 

Now a check box for each ordinate value will appear when you click the Linear Fit icon. Try it. You should get the 
result below. 

 

 

 
 

 

 

Figure 9 
 

Since the stretch will be zero when the weight is zero our new line will (within the range of error) pass through the 
origin of our graph. Since it has a constant slope and passes through the origin, doubling the weight will double the 
stretch, tripling the weight will triple the stretch, etc. This relation is called a direct proportion. 

Two quantities are directly proportional if they vary in such a way that one of the quantities is a constant multiple of 
the other, or equivalently if they have a constant ratio. 

Why doesn’t our data table exactly indicate this? First of all, our line of best fit doesn’t pass exactly through the origin, 
but it comes close enough that we can attribute the slight miss to random error in measurement. Secondly, we should 
never pay any attention to the data in our data table once we’ve drawn our graph. If you count the moving fish in 
your fish pond three times and got 32, 36, and 37, your best estimate of their number would be 35, the average, not one 
of the specific counts. The line of best fit is a similar sort of average. The data table above gives 7.1 cm for the stretch 
with 2.0 N added. But the line actually goes a bit below the center of that data point, more like 6.8. And our equation 
suggests the same. 

𝑆𝑡𝑟𝑒𝑡𝑐ℎ = 3.3
𝑐𝑚
𝑁

 (2.0 𝑁) +  .1 𝑐𝑚 = 6.7 𝑐𝑚 
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Note the distinction between a linear relation and a direct proportion: 

• A direct proportion implies a linear relation. 
• A linear relation does not imply a direct proportion. 

2.1.4 – Inverse Proportion 
We found that in a direct proportion, multiplying the independent variable by a certain value will result in the dependent 
variable changing by the same factor. E.g., for a rectangle, Area = length × width. Doubling the width will double the 
area. We also find the inverse of this relation – doubling one quantity will halve the other if all other factors are held 
constant. Let’s return to our pizza to find this inverse proportion. 

From a given amount of dough you can create a pizza of almost any size, but as the size (area) increases, something has 
to give. That something is thickness.  

𝑣𝑜𝑙𝑢𝑚𝑒 = 𝑎𝑟𝑒𝑎 × 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 

Let’s assume our pizza dough comes in balls of diameter 4.6 in. Their volume would then be 

𝑣𝑜𝑙𝑢𝑚𝑒 =
4
3
𝜋𝑟3 =

4
3
𝜋(2.3 𝑖𝑛)3 = 51 𝑖𝑛3 

For any circular pizza made with such a similar ball of dough,  

51 𝑖𝑛3 = 𝑎𝑟𝑒𝑎 × 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 

A graph of area vs. thickness illustrates the nature of the inverse proportion. Since the product of the area and thickness 
is fixed, increasing one decreases the other by the same factor. That is, doubling the thickness halves the area. 

Two variables are inversely proportional (or vary inversely) if one of the variables is directly proportional to the 
multiplicative inverse of the other, or equivalently if their product is a constant. 

 

 

 
 

 

 

Figure 10 
 

This relation can be stated as 

𝑘 = 𝑥 × 𝑦    →    𝑥 =
𝑘
𝑦

   →    𝑥 ∝
1
𝑦

 

Just as with our initial pizza problem we can find the relation between the area and thickness by linearizing the data. 
First we create a new calculated column defined by 1/Thickness. You should be able to figure this out now. If you have 
trouble, be sure and ask for help. 

This column is populated by the inverse of each thickness value. Plotting area vs. 1/T produces a straight line. So we 
can say that area is directly proportional to 1/T, the third statement above. 
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Figure 11  

𝐴 ∝
1
𝑇

   →    𝐴 =
𝑘
𝑇

   →     𝑘 = 𝐴𝑇  →     𝑉𝑜𝑙𝑢𝑚𝑒 = 𝐴𝑟𝑒𝑎 × 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 

2.1.5 – Square or Quadratic Proportion 
There are two different situations where we encounter quadratic proportions. 

1) 𝑦 ∝ 𝑥2  𝑜𝑟  𝑦 = 𝑘𝑥2  
 

 

The independent variable is directly proportional to the square of the 
dependent variable. 

2) 𝑦2 ∝ 𝑥   𝑜𝑟   𝑦2 = 𝑘𝑥 

 

The square of the independent variable is directly proportional to the 
dependent variable. 

 

 
 
 
 
 
 
 

 
 
 
Figure 12  

We’ve already seen the first one. By 
plotting Area vs. diameter squared we 
obtained a straight line with slope .78 in2 
giving us the equation  

𝐴 =  .78 𝑖𝑛2𝑑2 
(plus a y-intercept and constant that were 
small enough to be ignored.) 
 
This is the equation of a parabola. More 
specifically it’s an upward opening 
parabola. This is the nature of the graph 
of 

𝑦 ∝ 𝑥2. 
 

The other type of quadratic proportion is exhibited by waves traveling in a string such as those in a guitar. When a 
guitar string is plucked, waves travel quickly along the string and reflect back and forth between the fixed ends. The 
frequency of the sound produced is determined by the frequency of these round trips. The faster the waves travel the 
higher the frequency. The speed is adjusted by tightening and loosening the strings using the tuning pegs at the top of 
the guitar. Thus there is a relationship between the velocity of the waves and the tension in a string. Let’s find it. 
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Figure 13 

 
Here’s our data for a certain string. Letting 
Logger Pro fit the curve (Method 2) we find that 

𝑣 = 87.7 𝑇 .5 

is the best fit. 
To write this as a function of T we square both 
sides to produce 

𝑣2 = 7692 𝑇 

which is in the form of the second quadratic 
relation 

𝑦2 ∝ 𝑥 

 

 
Figure 14 

 

To find this equation by linearizing 
our data we can create a new table 
column by squaring all the speed 
values and plot speed2 vs. Tension. 

 

This time we get the equation 

𝑣2 = (7692 𝑚2/𝑠2/𝑁) 𝑇  

This is again the equation of a parabola. This time we have a side opening parabola. This is the nature of the graph of 

𝑦2 ∝ 𝑥. 
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Graphical Analysis Summary 
In the lab we’ll see relations 2-5 modeled. Relations 6-7 will be seen in class. 

You’ll want to refer back to this chart as you work with the data in your labs. 

Relation between variables Graph Equation 
1. No relation Horizontal line y = const. 

2. Linear relation with y-intercept Straight, non-horizontal line not 
through origin 

y = mx + b 
m: slope, b: y-intercept 

3. Direct proportion Straight, non-horizontal line 
through origin 

y = mx 
m: slope 

4. Inverse proportion Hyperbola y = 1/x 

5. Quadratic proportion a. upward opening parabola 
b. side opening parabola 

y = kx2 
y2 = kx 

6. Inverse square proportion 

 

y = k/x2  

7. Sinusoidal 

 

y = A sin(x)   (shown) 
y = A cos(x) 
y = A tan(x) 
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