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1.3 Dot Product, Angles, and Orthogonal Projection

The dot product on Rn is an easy-to-calculate operation that you perform on pairs

of vectors and which gives you back a real number, not a vector. The dot product is

important because, in 2 and 3 dimensions, the dot product gives us an easy way of

computing the angle between vectors. In higher dimensions, the dot product is used to

define the angle between two vectors. A fundamental application of the dot product is

in calculating the work done by a constant force as an object undergoes a displacement.

The dot product also arises when dealing with orthogonal projection. Orthogonal

projection gives us a simple way to decompose a vector into a sum of two vectors, one

of which is parallel to a prescribed vector b and the other of which is perpendicular, or

orthogonal, to b.

Basics:

If we have two vectors in R2 or R3, and we draw them as starting at the same point,

then we may talk about the angle between the vectors, which could be anywhere from

0 degrees or radians, when the vectors point in the same direction, to 180 degrees, or π

radians, when the vectors point in opposite directions.

Figure 1.3.1: An acute
angle between vectors.

θ

Figure 1.3.2: An obtuse
angle between vectors.

Given two vectors in coordinates, we would like to find an easy way to calculate the

angle between them.

Consider two vectors in R2, a = (x1, y1) and b = (x2, y2). We draw these vectors

based at the origin, and we let c = b− a; see Figure 1.3.3.

θa

c
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Figure 1.3.3: Vectors a and b, and the angle between them.

Recall the Law of Cosines from trigonometry, which, in terms of our vectors, says

|c|2 = |a|2 + |b|2 − 2|a||b| cos θ.

Noting that

|a|2 = x2
1 + y2

1 , |b|2 = x2
2 + y2

2 , and |c|2 = (x2 − x1)2 + (y2 − y1)2,

http://www.youtube.com/watch?v=KPoxjKSY7Zc
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we find that the Law of Cosines becomes

x2
2 − 2x1x2 + x2

1 + y2
2 − 2y1y2 + y2

1 = x2
1 + y2

1 + x2
2 + y2

2 − 2|a||b| cos θ.

Subtracting x2
1 + y2

1 + x2
2 + y2

2 from both sides, and dividing by −2, we arrive at

x1x2 + y1y2 = |a||b| cos θ.

Note how simple the left-hand side of the above formula is; it’s just the product of

the x-coordinates of the vectors a and b added to the product of the y-coordinates.

You can perform the analogous calculations for two vectors p = (x1, y1, z1) and

q = (x2, y2, z2) in R3, and what you find is

x1x2 + y1y2 + z1z2 = |p||q| cos θ,

where θ is the angle between p and q. Again, the left-hand side is simply the sum of

the product of the corresponding coordinates of the two vectors.

This motivates us to define:

Definition 1.3.1. Let v = (v1, v2, . . . , vn) and w = (w1, w2, . . . , wn) be vectors in
Rn. Then, the dot product v ·w of v and w is the real number given by adding
together the product to the corresponding coordinates of the two vectors, i.e.,

v ·w = v1w1 + v2w2 + · · ·+ vnwn.

It is a common, but horrible,
mistake to think that the dot
product of two vectors yields
another vector. You add to-
gether the products of the
corresponding coordinates, so
you end up with a num-
ber, a scalar, not a vec-
tor.

The important properties of the dot product, which we shall use throughout the

remainder of this book are:
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Theorem 1.3.2. Let a, b, and c be vectors in Rn, and let r and s be real numbers.
Then,

1. (commutativity) a · b = b · a;

2. (distributivity) a · (b + c) = (a · b) + (a · c);

3. (scalar extraction) (ra) · (sb) = (rs)(a · b);

4. a · a = |a|2;

5. (Cauchy-Schwarz Inequality) the absolute value of a · b satisfies

|a · b| ≤ |a||b|,

and the equality holds if and only if a and b are parallel; and

6. the dot product is related to the angles between vectors by

a · b = |a||b| cos θ,

where θ is the angle between the vectors a and b.

Note that, if one of the vec-
tors in the dot product is
the zero vector, then there
is no “the” angle between
the vectors, because we allow
the zero vector to have ev-
ery direction. Still, we go
ahead and write that a · b =
|a||b| cos θ, since if a or b
equals 0, the equality holds
for all θ.

Remark 1.3.3. We leave the verification of properties 1-4 of Theorem 1.3.2 as exercises;

they follow easily from the definition and corresponding properties of real numbers.

We will prove the Cauchy-Schwarz Inequality in the More Depth portion of this

section.

We derived the formula a · b = |a||b| cos θ for vectors in R2; the proof in R3 is

essentially identical. What happens in Rn, where n ≥ 4?

The answer may seem like cheating. If a and b are non-zero vectors in Rn, then the

Cauchy-Schwarz Inequality tells us that

−1 ≤ a · b
|a||b|

≤ 1,

and we define the angle between a and b to be

θ = cos−1

(
a · b
|a||b|

)
.
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Before we state an important corollary of Theorem 1.3.2, we should mention that

there are three different terms which are all used to mean the same thing: perpendicular,

orthogonal, and normal. For each of these synonyms, there are contexts in which one is

the classically preferred term; you shall see this, and hopefully get used to it, throughout

the textbook. In addition, an angle of 90◦ = π/2 radians is, as you probably know, called

a right angle.

Corollary 1.3.4. Let a and b be vectors in Rn. Then, a and b are perpendicular
(or, orthogonal, or, normal) to each other if and only if

a · b = 0.

The angle θ between non-zero vectors a and b is acute, i.e., 0 ≤ θ < π/2
radians, if and only if a · b > 0. The angle θ between non-zero vectors a and b is
obtuse, i.e., π/2 < θ ≤ π radians, if and only if a · b < 0.

Example 1.3.5. Consider the vectors

a = (1, 2, 3), b = (−2,−2, 2), and c = (0, 4, 1).

a) For each pair of vectors, decide if the angle between them is right, acute, or obtuse.

b) For the acute and obtuse angles from part (a), determine the actual angle between

the vectors.

Solution:

Part (a) is simple; you calculate the dot products and see whether you get 0, some-

thing positive, or something negative.

We find

a · b = (1, 2, 3) · (−2,−2, 2) = (1)(−2) + (2)(−2) + (3)(2) = 0,

so that the angle between a and b is a right angle, i.e. a and b are orthogonal;

a · c = (1, 2, 3) · (0, 4, 1) = (1)(0) + (2)(4) + (3)(1) = 11 > 0,

so that the angle between a and c is acute; and

b · c = (−2,−2, 2) · (0, 4, 1) = (−2)(0) + (−2)(4) + (2)(1) = −6 < 0,

so that the angle between b and c is obtuse.
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Now, we want to find the actual angles between a and c, and between b and c.

First, we calculate

|a| =
√

12 + 22 + 32 =
√

14, |b| = |2(−1,−1, 1)| = 2
√

3, and |c| =
√

17.

Therefore, we find

θa,c = cos−1

(
a · c
|a||c|

)
= cos−1

(
11√

14
√

17

)
≈ 0.777 radians ≈ 44.52◦,

and

θb,c = cos−1

(
b · c
|b||c|

)
= cos−1

(
−6

2
√

3
√

17

)
≈ 2.004 radians ≈ 114.8◦.

Remark 1.3.6. Note that the standard basis vectors (recall Definition 1.2.21) in Rn
are pairwise-orthogonal. This is easy to see; in R2,

i · j = (1, 0) · (0, 1) = 0.

In R3, it’s just as easy:

i·j = (1, 0, 0)·(0, 1, 0) = 0, i·k = (1, 0, 0)·(0, 0, 1) = 0, and j·k = (0, 1, 0)·(0, 0, 1) = 0.

More generally, in Rn, el · em = 0, if l 6= m.

In fact, the standard basis is what’s known as an orthonormal basis, which means

that the vectors are pairwise-orthogonal and that each basis vector is a unit vector,

which, in terms of the dot product, means that |em| =
√

em · em = 1 or, simply,

em · em = 1.

Example 1.3.7. Calculate the dot product

(3i− j + 2k) · (i + j).

Solution:

Of course, we can eliminate the explicit references to i, j, and k, and calculate

(3i− j + 2k) · (i + j) = (3,−1, 2) · (1, 1, 0) = (3)(1) + (−1)(1) + (2)(0) = 3− 1 + 0 = 2.

However, it’s instructive to use the algebraic properties of the dot product, along

with the fact that the standard basis is orthonormal:

(3i− j + 2k) · (i + j) = 3(i · i) + 3(i · j)− (j · i)− (j · j) + 2(k · i) + 2(k · j) =

3 + 0− 0− 1 + 0 + 0 = 2.
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Example 1.3.8. Sometimes, given a non-zero vector (a, b) in R2, it is desirable to

produce a non-zero vector which is perpendicular to (a, b). How do you do this? It’s

easy.

Just swap a and b and negate one them. That is, take the vector (b,−a) or (−b, a).

It is trivial to verify that the dot product of either of these with (a, b) is 0:

(a, b) · (b,−a) = ab+ (b)(−a) = 0 and (a, b) · (−b, a) = (a)(−b) + ba = 0.

In many physical problems, you are given a vector F, and a non-zero vector v, and

you want to consider the “part of F that is parallel to v”. What does this mean?

F
Fn

Fvv

Figure 1.3.4: Writing F as a sum of vectors parallel and normal to v.

What we mean is that we want to write F as the sum of two vectors Fv and Fn,

where Fv is a scalar multiple of v and Fn is orthogonal, or normal, to v. Thus, we want

F = Fv + Fn = tv + Fn,

for some t, where Fn is orthogonal to v.

How do we determine t? We take the dot product of both sides of the previous

equation with v and use that we are requiring that Fn is orthogonal to v, so that

Fn · v = 0; we find

F · v = t(v · v) + 0.

Therefore, t would have to equal (F · v)/(v · v), and so, if there exist Fv and Fn with

the desired properties, we must have that

Fv = tv =

(
F · v
v · v

)
v =

(
F · v
|v|2

)
v,
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and

Fn = F −
(

F · v
|v|2

)
v.

Moreover, it is easy to check that these Fv and Fn do, indeed, satisfy the properties

that we wanted; for clearly, F = Fv + Fn, Fv is parallel to v, and Fn is orthogonal to

v because(
F −

(
F · v
|v|2

)
v

)
· v = F · v −

(
F · v
|v|2

)
(v · v) = F · v − F · v = 0.

We give names to Fv and Fn.

Definition 1.3.9. Given a vector F and a non-zero vector v, both in Rn, we define
the orthogonal projection of F onto v to be the vector

Fv = projvF =

(
F · v
|v|2

)
v =

(
F · v

|v|

)
v

|v|
.

This is also referred to as the component of F, parallel to v.
In this context, the vector Fn = F−Fv is referred to as the component of F,

normal to v

Remark 1.3.10. We shall usually use the notation Fv for the orthogonal projection.

However, the notation projvF is better if you’re going to project multiple vectors onto

v, and so want to discuss the orthogonal projection function projv : Rn → Rn defined

by

projv(F) =

(
F · v
|v|2

)
v.

The vector Fn, the component of F normal to v that we discussed earlier, is not

usually given special notation or a special name; you simply write F−Fv for this normal

component.

Note that the vector u = v/|v| is the unit vector in the direction of v, so that

Fv =

(
F · v

|v|

)
v

|v|
= (F · u)u = Fu,

which makes it clear that only the direction of v matters when calculating the orthogonal

projection. In fact,

F−v = F−u = (F · −u)(−u) = (F · u)u = Fu = Fv
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and, thus, you get the same orthogonal projection if you project onto parallel vectors. Of

course, this makes perfect sense from our original discussion, where we simply required

that Fv be parallel to v.

Finally, when u is a unit vector, the formula

Fu = (F · u)u

is so simple to remember that many people begin the problem of calculating Fv by first

producing u = v/|v|, and then using that

Fv = Fu = (F · u)u.

Example 1.3.11. Suppose that F = (1, 2, 5). Find the component of F parallel to

v = (−1, 0, 1), i.e., calculate the orthogonal projection of (1, 2, 5) onto (−1, 0, 1). Also,

write F as the sum of two vectors, one parallel to v and one orthogonal/normal to v.

Solution:

We find:

Fv =

(
F · v
|v|2

)
v =

(
(1, 2, 5) · (−1, 0, 1)

|(−1, 0, 1)|2

)
(−1, 0, 1) =

4

2
(−1, 0, 1) = 2(−1, 0, 1).

The component of F, normal to v, Fn is simply the difference

Fn = F− Fv = (1, 2, 5)− (−2, 0, 2) = (3, 2, 3).

Thus,

(1, 2, 5) = 2(−1, 0, 1) + (3, 2, 3)

is the required decomposition.

Example 1.3.12. In physics and engineering problems, a vector F is frequently speci-

fied, not by giving components, but rather by giving the magnitude and the angle made

(in a given plane) with respect to a fixed line or straight object. See Figure 1.3.5.

In this case, the orthogonal projection of F onto the line or object is denoted in

some intuitive way, like Frod in Figure 1.3.5, and isn’t computed by explicitly using the

dot product in its coordinate form.

Consider, for instance, a force of 12 Newtons acting at a 30◦ angle at one end of a

metal rod; referring to Figure 1.3.5, this means that |F| = 12 Newtons and θ = 30◦.
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FF

F rodrod

n

θ

Figure 1.3.5: The components of F parallel and normal to a straight rod.

Then, the magnitude of Frod, the component of F which is parallel to the rod, is obtained

simply from trigonometry:

|Frod| = |F| cos θ = 12 cos(30◦) = 6
√

3 N.

While the magnitude of the normal component Fn is

|Fn| = |F| sin θ = 12 sin(30◦) = 6 N.

There is no question about the directions in such a physical set-up; one component is

parallel, and one is normal to the rod, and you see from the physical diagram which

way the vectors point.

Of course, if you want to write things in terms of coordinates, you can. Consider

the whole situation as taking place in xy-plane, with the rod lying along the positive

x-axis, with the origin being at the end where the force is acting. Then, the unit vector

u which points in the direction of the rod is simply u = i.

Then,

Fu = (F · u)u =
(
|F| cos θ

)
i,

which, of course, is what we obtained without referring to the dot product.

Now, recall that, if an object undergoes a displacement of magnitude d along a line,

and a force of magnitude F acts on the object in a direction parallel to the line, then

the work done by the force on the object is ±Fd, where the work is positive if the force

and displacement are in the same direction, and negative if the force and displacement

are in opposite directions.

More generally, if a force vector F acts in one direction and the displacement vector

d is in a (possibly) different direction, then the work is calculated how it’s calculated

when the force acts parallel to the displacement, except that you use the magnitude of

the component of the force that’s parallel to d. Thus, the work is ± |Fd| |d|, where you
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pick + if Fd is in the direction of d, and pick − if the direction of Fd is opposite that

of d.

Therefore, the absolute value of the work is given by:

|work| =

∣∣∣∣(F · d
|d|2

)
d

∣∣∣∣ · |d| = |F · d|.

But notice that Fd points in the direction of d if and only if F · d ≥ 0, and points in

the direction opposite d if and only if F ·d ≤ 0. It follows that the work done, with the

appropriate ± sign is simply given by F · d.

The above discussion was our intuitive lead-in to making the following definition:

Definition 1.3.13. The work done by a (constant) force F in Rn, acting on an
object, as the object is displaced along a line by a displacement vector d in Rn is
given by

work = F · d = |F||d| cos θ,

where θ is the angle between F and d.

Later, in Section 1.6, we
shall see that the object does
not need to move along a
straight line and yet, still,
to calculate the work, you
dot the constant force with
the total, straight, displace-
ment vector. However, we
make this more basic defini-
tion here, and show that the
general case follows from in-
tegrating the case where you
look at infinitesimal displace-
ment in a straight line.

We will wait until Section 4.2
to address the case where the
force is not constant.

Example 1.3.14. Suppose that a force of F = (−1, 3, 2) Newtons acts on an object

as it is displaced along a line from the point (0, 2, 5) to (4, 0,−7), where all coordinates

are measured in meters. How much work does the force do on the object?

Solution:

The displacement vector is

d = (4, 0,−7)− (0, 2, 5) = (4,−2,−12) meters.

Thus, the work done by F is

F · d = (−1, 3, 2) · (4,−2,−12) = −4− 6− 24 = −34 joules.

More Depth:

Example 1.3.15. Find the angles in the triangle with vertices (1, 1), (2, 5), and (4, 0).

Solution:
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Figure 1.3.6: Vectors, and their negatives, between the vertices of a triangle.

We denote the angle inside the triangle, at a given vertex, by subscripting θ by the

vertex, and thus want to calculate θ(1,1), θ(2,5), and θ(4,0).

We calculate the displacement vectors between the vertices, as indicated in Fig-

ure 1.3.6. We find

a = (2, 5)−(1, 1) = (1, 4), b = (4, 0)−(2, 5) = (2,−5), and c = (4, 0)−(1, 1) = (3,−1).

Now, remembering that we want the vectors to start at the same base point to

determine the angle, we calculate

θ(1,1) = cos−1

(
a · c
|a||c|

)
= cos−1

(
−1√

17
√

10

)
≈ 1.647568 radians ≈ 94.40◦;

θ(2,5) = cos−1

(
−a · b
| − a||b|

)
= cos−1

(
18√

17
√

29

)
≈ 0.625485 radians ≈ 35.84◦;

and

θ(4,0) = cos−1

(
−b · −c

| − b|| − c|

)
= cos−1

(
11√

29
√

10

)
≈ 0.868539 radians ≈ 49.76◦.

Note that, as they should, the angles add up to 180◦.
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Example 1.3.16. Suppose that a constant force F, in R2 or R3 (or, really, in Rn), acts

on an object as the object is displaced along a straight line from a point p0 to a point

p1, then along a straight line from p1 to p2, then along a straight line from p2 to p3,

and so on, and then finally along a straight line from pk−1 to pk.

Show that the total work done by the force is equal to simply the force dotted with

the net displacement d = pk − p0.

Solution

This is actually quite easy. For each i, where 1 ≤ i ≤ k, let di = pi − pi−1 be

the displacement vector from pi−1 to pi. Then, the work done by F, as the object is

displaced by di is Wi = F · di.

Thus, the total work is

W =

k∑
i=1

Wi =

k∑
i=1

F · di = F ·

(
k∑
i=1

di

)
= F ·

(
k∑
i=1

(pi − pi−1)

)
=

F ·
[
(p1 − p0) + (p2 − p1) + (p3 − p2) + · · ·+ (pk − pk−1)

]
,

which “telescopes” to F · (pk − p0) = F · d.

We would now like to prove the Cauchy-Schwarz Inequality from Theorem 1.3.2.

Let a and b be vectors in Rn. Note that, if either a or b is the zero vector, then the

equality holds, and the vectors are parallel, since the zero vector has every direction.

So, assume that b 6= 0. Then, for all real numbers t

(a + tb) · (a + tb) = |a + tb|2 ≥ 0,

and the equality holds if and only if a + tb = 0. Note that a + tb = 0 implies that a

and b are parallel.

Now, expanding algebraically, using properties 1-4 in Theorem 1.3.2, we find

(a + tb) · (a + tb) = a · a + t(a · b) + t(b · a) + t2(b · b) =

|a|2 + 2t(a · b) + t2|b|2 = |b|2
[
t2 + 2

(
a · b
|b|2

)
t+
|a|2

|b|2

]
,

where |b|2 6= 0, since b 6= 0.

This shows that, for all t,

t2 + 2

(
a · b
|b|2

)
t+
|a|2

|b|2
≥ 0,
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where equality holds if and only if a + tb = 0.

We are now going to complete the square in the t variable, and then see what special

value of t gives us the Cauchy-Schwarz Inequality.

Completing the square, we obtain, for all t

t2 + 2

(
a · b
|b|2

)
t+
|a|2

|b|2
=

[
t+

a · b
|b|2

]2

+
|a|2|b|2 − (a · b)2

|b|4
≥ 0.

Therefore, if we let t = −(a · b)/|b|2, we conclude that

|a|2|b|2 − (a · b)2 ≥ 0,

and, if equality holds, then a = −tb, i.e., a is parallel to b. Now note that, after taking

square roots, the previous inequality is equivalent to the Cauchy-Schwarz Inequality:

|a · b| ≤ |a||b|.

It remains to be shown that, if a and b are parallel, then |a · b| = |a||b|. However,

this is easy; if a = sb, then both sides of the equality equal |s||b|2.

We can now prove a “geometrically obvious” theorem; one which effectively says

that the sum of the lengths of two sides of a triangle is greater than the length of the

remaining side.

Theorem 1.3.17. (Triangle Inequality) Suppose that a and b are vectors in Rn.
Then,

|a + b| ≤ |a|+ |b|,

and equality holds if and only if a and b have the same direction.

a

b

a+b

Figure 1.3.7: Geometric
representation of the Tri-
angle Inequality.

Proof. The inequality is equivalent to:

|a + b|2 ≤ |a|2 + 2|a||b|+ |b|2.

Now, we use that

|a + b|2 = (a + b) · (a + b) = (a · a) + 2(a · b) + (b · b) = |a|2 + 2(a · b) + |b|2

to conclude that the Triangle Inequality is equivalent to

a · b ≤ |a||b|,

which follows at once from the Cauchy-Schwarz Inequality.

In addition, the equality a · b = |a||b| implies that a and b are parallel by the

Cauchy-Schwarz Theorem; but the equality also implies that a · b ≥ 0, so that a and b

must, in fact, have the same direction.
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+ Linear Algebra:

In the + Linear Algebra portion of the previous section, we discussed that a vector v

in Rn is frequently written as a column vector [v], a matrix with n rows and 1 column.

There is an operation on matrices called transpose. The transpose of an n×m matrix

A is denoted AT, and is the m×n matrix whose rows are the columns of A, and whose

columns are the rows of A.

For instance, [
3 −5 7
−1 0 2

]T

=

 3 −1
−5 0

7 2

 .
In particular, the transpose of a column vector with n entries is a row vector with

the same n entries, e.g., 
2
5
−1

7


T

= [ 2 5 − 1 7 ].

In terms of matrix multiplication, the dot product of two vectors v and w in Rn,

written as column vectors, is defined to be (the unique entry of) the 1× 1 matrix given

by

[v] · [w] = [v]T[w].

Technically, there is a differ-
ence between a 1 × 1 matrix
and the unique entry of the
matrix; we shall not distin-
guish between these two ob-
jects.

If v and w are vectors in Rn, and A is an n × n matrix, then the matrix product

A[v] is a column vector in Rn, and (A[v])
T

= [v]TAT.

Therefore, we arrive at the important formula for how matrix multiplication interacts

with the dot product:

A[v] · [w] = (A[v])
T

[w] = [v]T
(
AT[w]

)
= [v] ·AT[w].

1.3.1 Exercises Online answers to select exer-
cises are here.

Basics:
In each of the following exercises, you are given pair of vectors in some Rn;

calculate the dot product, and determine if the angle between the vectors is

a right, acute, or obtuse angle.

http://en.wikipedia.org/wiki/Transpose
http://en.wikipedia.org/wiki/Matrix_multiplication
http://www.centerofmath.org/multians/section1.3.pdf



