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Beams are essential load carrying components in a wide variety of modern structures.

Chapter Objectives
•	 Develop a relationship between moment and curvature for a 

beam loaded by transverse applied loads and bending moments.
•	 Define the flexure formula, which shows that normal stresses 

vary linearly over the depth of a beam and are proportional to 
the bending moment and inversely proportional to the moment 
of inertia of the cross section.

•	 Define the section modulus of a beam and use it to design beams 
made of steel, wood, or other materials based upon an allowable 
stress for the material.

•	 Investigate shear stresses in beams of different shapes and study 
the variation of shear stress over the depth of a beam using a 
shear formula.

•	 Design the glued or nailed connections between the parts of 
built-up beams to ensure that the connections are strong enough 
to transmit the horizontal shear forces acting between the parts 
of the beam.

•	 Superpose bending and axial stresses for structural members 
subjected to simultaneous action of transverse and axial loads.

•	 Evaluate normal stresses in beams at locations of holes or other 
abrupt changes in cross section where stress concentrations 
occur.
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446	 Chapter 5  Stresses in Beams (Basic Topics)

5.1	 Introduction
In the preceding chapter, you saw how the loads acting on a beam create internal 
actions (or stress resultants) in the form of shear forces and bending moments. 
This chapter goes one step further and investigates the stresses and strains asso-
ciated with those shear forces and bending moments. Knowing the stresses and 
strains, you will analyze and design beams subjected to a variety of  loading 
conditions.

The loads acting on a beam cause the beam to bend (or flex), thereby deform-
ing its axis into a curve. As an example, consider a cantilever beam AB subjected 
to a load P at the free end (Fig. 5-1a). The initially straight axis is bent into a curve 
(Fig. 5-1b), called the deflection curve of the beam.

For reference purposes, a system of coordinate axes (Fig. 5-1b) is constructed 
with the origin located at a suitable point on the longitudinal axis of the beam. 
In this illustration, the origin is placed at the fixed support. The positive x axis 
is directed to the right, and the positive y axis is directed upward. The z axis, 
not shown in the figure, is directed outward (that is, toward the viewer), so that 
the three axes form a right-handed coordinate system.

The beams considered in this chapter are assumed to be symmetric about the 
x-y plane, which means that the y axis is an axis of symmetry of the cross section. 
In addition, all loads must act in the x-y plane. As a consequence, the bending 
deflections occur in this same plane, known as the plane of bending. Thus, the 
deflection curve shown in Fig. 5-1b is a plane curve lying in the plane of bending.

The deflection of the beam at any point along its axis is the displacement of 
that point from its original position measured in the y direction. Denote the 
deflection by the letter v to distinguish it from the coordinate y itself (see Fig. 5-1b).1

5.2	 Pure Bending and Nonuniform Bending
When analyzing beams, it is often necessary to distinguish between pure bending 
and nonuniform bending. Pure bending refers to the flexure of a beam under a 
constant bending moment. Therefore, pure bending occurs only in regions of a 
beam where the shear force is zero (because V dM dx/5 ). In contrast, nonuniform 
bending refers to flexure in the presence of shear forces, which means that the 
bending moment changes as you move along the axis of the beam.

As an example of pure bending, consider a simple beam AB loaded by 
two couples M1 having the same magnitude but acting in opposite directions 
(Fig. 5-2a). These loads produce a constant bending moment M M15  through-
out the length of the beam, as shown by the bending moment diagram in 
(Fig. 5-2b). Note that the shear force V is zero at all cross sections of the beam.

Figure 5-3a shows pure bending, where the cantilever beam AB is subjected to 
a clockwise couple M2 at the free end. There are no shear forces in this beam, and 
the bending moment M is constant throughout its length. The bending moment 
is negative M M( )25 2 , as shown by the bending moment diagram in Fig. 5-3b.

The symmetrically loaded simple beam of Fig. 5-4a is an example of a 
beam that is partly in pure bending and partly in nonuniform bending, as 
seen from the shear-force and bending-moment diagrams (Figs. 5-4b and c). 

1In applied mechanics, the traditional symbols for displacements in the x, y, and  
z directions are u, v, and w, respectively.

Figure 5-1
Bending of a cantilever beam: 
(a) beam with load and 
(b) deflection curve
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Figure 5-2
Simple beam in pure bending 
M M( )15

93347_ch05_hr_445-552.indd   446 10/25/16   5:28 PM



	 Section 5.3  Curvature of a Beam	 447

The central region of the beam is in pure bending because the shear force is 
zero and the bending moment is constant. The parts of the beam near the ends 
are in nonuniform bending because shear forces are present and the bending 
moments vary.

In the following two sections, the strains and stresses in beams subjected only 
to pure bending are investigated. Fortunately, the results obtained for pure bend-
ing can be used even when shear forces are present, as explained in Section 5.8.

5.3	 Curvature of a Beam
When loads are applied to a beam, its longitudinal axis is deformed into a curve, 
as illustrated previously in Fig. 5-1. The resulting strains and stresses in the beam 
are directly related to the curvature of  the deflection curve.

To illustrate the concept of curvature, consider again a cantilever beam 
subjected to a load P acting at the free end (see Fig. 5-5a on the next page). The 
deflection curve of this beam is shown in Fig. 5-5b. For purposes of analysis, 
identify two points m1 and m2 on the deflection curve. Point m1 is selected at 
an arbitrary distance x from the y axis, and point m2 is located a small dis-
tance ds further along the curve. At each of these points, draw a line normal 
to the tangent to the deflection curve, that is, normal to the curve itself. These 
normals intersect at point O9, which is the center of curvature of the deflection 
curve. Because most beams have very small deflections and nearly flat deflec-
tion curves, point O9 is usually located much farther from the beam than is 
indicated in the figure.

The distance m O1 9 from the curve to the center of curvature is called the 
radius of curvature r (rho), and the curvature k (kappa) is defined as the recip-
rocal of the radius of curvature. Thus,

	 k
r

5
1

	 (5-1)

Curvature is a measure of how sharply a beam is bent. If  the load on a beam 
is small, the beam will be nearly straight, the radius of curvature will be very 
large, and the curvature will be very small. If  the load is increased, the amount 
of bending will increase—the radius of curvature will become smaller, and the 
curvature will become larger.

The geometry of triangle O m m1 29  (Fig. 5-5b) leads to

	 d dsr u 5 	 (5-2)
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Figure 5-3
Cantilever beam in pure bending 
M M( )25 2
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Figure 5-4
Simple beam with central region 
in pure bending and end regions 
in nonuniform bending
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448	 Chapter 5  Stresses in Beams (Basic Topics)

in which du  (measured in radians) is the infinitesimal angle between the normals 
and ds is the infinitesimal distance along the curve between points m1 and m2. 
Combine Eq. (5-2) with Eq. (5-1) to get

	
d
ds

k
r

u
5 5

1
	 (5-3)

This equation for curvature is derived in textbooks on calculus and holds for 
any curve, regardless of  the amount of curvature. If  the curvature is constant 
throughout the length of a curve, the radius of curvature also will be constant, 
and the curve will be an arc of a circle.

The deflections of a beam are usually very small compared to its length 
(consider, for instance, the deflections of the structural frame of an automobile 
or a beam in a building). Small deflections mean that the deflection curve is 
nearly flat. Consequently, the distance ds along the curve may be set equal to its 
horizontal projection dx (see Fig. 5-5b). Under these special conditions of small 
deflections, the equation for the curvature becomes

	
d
dx

k
r

u
5 5

1
	 (5-4)

Both the curvature and the radius of curvature are functions of the distance x 
measured along the x axis. It follows that the position O9 of  the center of curva-
ture also depends upon the distance x.

The curvature at a particular point on the axis of a beam depends upon 
the bending moment at that point and upon the properties of the beam itself 
(shape of cross section and type of material). Therefore, if the beam is pris-
matic and the material is homogeneous, the curvature varies only with the 
bending moment (see Section 5.5). Consequently, a beam in pure bending has 
constant curvature, and a beam in nonuniform bending has varying curvature.

The sign convention for curvature depends upon the orientation of the 
coordinate axes. If the x axis is positive to the right and the y axis is positive 
upward, as shown in Fig. 5-6, then the curvature is positive when the beam 
is bent concave upward and the center of curvature is above the beam. Con-
versely, the curvature is negative when the beam is bent concave downward, 
and the center of curvature is below the beam.

The next section shows how the longitudinal strains in a bent beam are 
determined from its curvature, and Chapter 9 covers how curvature is related 
to the deflections of beams.
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Figure 5-6
Sign convention for curvature

Figure 5-5
Curvature of a bent beam:  
(a) beam with load and  
(b) deflection curve
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5.4	 Longitudinal Strains in Beams
The longitudinal strains in a beam can be found by analyzing the curvature of 
the beam and the associated deformations. For this purpose, consider a por-
tion AB of  a beam in pure bending subjected to positive bending moments M 
(Fig. 5-7a). Assume that the beam initially has a straight longitudinal axis (the 
x axis in the figure) and that its cross section is symmetric about the y axis, as 
shown in Fig. 5-7b.

Under the action of the bending moments, the beam deflects in the x-y 
plane (the plane of bending) and its longitudinal axis is bent into a circular 
curve (curve s–s in Fig. 5-7c). The beam is bent concave upward, which is pos-
itive curvature (Fig. 5-6a).

Cross sections of the beam, such as sections mn and pq in Fig. 5-7a, remain 
plane and normal to the longitudinal axis (Fig. 5-7c). The fact that cross sec-
tions of a beam in pure bending remain plane is so fundamental to beam theory 
that it is often called an assumption. However, it also could be called a theo-
rem because it can be proved rigorously using only rational arguments based 
upon symmetry (Ref. 5-1). The basic point is that the symmetry of the beam 
and its loading (Figs. 5-7a and b) means that all elements of the beam (such as 
element mpqn) must deform in an identical manner, which is possible only if 
cross sections remain plane during bending (Fig. 5-7c). This conclusion is valid 
for beams of any material, whether the material is elastic or inelastic, linear 
or nonlinear. Of course, the material properties, like the dimensions, must be 
symmetric about the plane of bending. Note: Even though a plane cross section 
in pure bending remains plane, there still may be deformations in the plane 
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Figure 5-7
Deformations of a beam in pure 
bending: (a) side view of beam, 
(b) cross section of beam,  
and (c) deformed beam

93347_ch05_hr_445-552.indd   449 10/25/16   5:28 PM



450	 Chapter 5  Stresses in Beams (Basic Topics)

itself. Such deformations are due to the effects of Poisson’s ratio, as explained 
at the end of this discussion.

Because of the bending deformations shown in Fig. 5-7c, cross sections mn 
and pq rotate with respect to each other about axes perpendicular to the x-y 
plane. Longitudinal lines on the lower part of the beam are elongated, whereas 
those on the upper part are shortened. Thus, the lower part of the beam is in 
tension and the upper part is in compression. Somewhere between the top and 
bottom of the beam is a surface in which longitudinal lines do not change in 
length. This surface, indicated by the dashed line s–s in Figs. 5-7a and c, is 
called the neutral surface of the beam. Its intersection with any cross-sectional 
plane is called the neutral axis of the cross section; for instance, the z axis is 
the neutral axis for the cross section of Fig. 5-7b.

The planes containing cross sections mn and pq in the deformed beam 
(Fig. 5-7c) intersect in a line through the center of curvature O9. The angle 
between these planes is denoted du , and the distance from O9 to the neutral 
surface s–s is the radius of curvature r. The initial distance dx between the 
two planes (Fig. 5-7a) is unchanged at the neutral surface (Fig. 5-7c), hence 

d dxr u 5 . However, all other longitudinal lines between the two planes either 
lengthen or shorten, thereby creating normal strains x« .

To evaluate these normal strains, consider a typical longitudinal line ef 
located within the beam between planes mn and pq (Fig. 5-7a). Identify line 
ef by its distance y from the neutral surface in the initially straight beam. 
Now assume that the x axis lies along the neutral surface of the undeformed 
beam. Of course, when the beam deflects, the neutral surface moves with 
the beam, but the x axis remains fixed in position. Nevertheless, the longi-
tudinal line ef in the deflected beam (Fig. 5-7c) is still located at the same 
distance y from the neutral surface. Thus, the length L1 of line ef after bend-
ing takes place is

	 L y d dx
y

dxr u
r

5 2 5 2( )1 	

after substitution of d dx/u r5 .
Since the original length of line ef is dx, it follows that its elongation is 

L dx,1 2  or ydx/r2 . The corresponding longitudinal strain is equal to the elon-
gation divided by the initial length dx; therefore, the strain-curvature relation is

	
y

yx«
r

k5 2 5 2 	 (5-5)

where k is the curvature [see Eq. (5-1)].
The preceding equation shows that the longitudinal strains in the beam are 

proportional to the curvature and vary linearly with the distance y from the 
neutral surface. When the point under consideration is above the neutral sur-
face, the distance y is positive. If the curvature is also positive (as in Fig. 5-7c), 
then x«  will be a negative strain, representing a shortening. By contrast, if the 
point under consideration is below the neutral surface, the distance y will be 
negative and, if the curvature is positive, the strain x«  also will be positive, 
representing an elongation. Note that the sign convention for x«  is the same as 
that used for normal strains in earlier chapters, namely, elongation is positive 
and shortening is negative.
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Equation (5-5) for the normal strains in a beam was derived solely from the 
geometry of the deformed beam—the properties of the material did not enter 
into the discussion. Therefore, the strains in a beam in pure bending vary linearly 
with distance from the neutral surface regardless of the shape of the stress-strain 
curve of the material.

The next step in the analysis, namely, finding the stresses from the strains, 
requires the use of the stress-strain curve. This step is described in the next sec-
tion for linearly elastic materials and in Section 6.10 for elastoplastic materials.

The longitudinal strains in a beam are accompanied by transverse strains 
(that is, normal strains in the y and z directions) because of the effects of Pois-
son’s ratio. However, there are no accompanying transverse stresses because 
beams are free to deform laterally. This stress condition is analogous to that of 
a prismatic bar in tension or compression, and therefore, longitudinal elements 
in a beam in pure bending are in a state of uniaxial stress.

A simply supported steel beam AB (Fig. 5-8a) of a length 
L 8.0 ft5  and height h 6.0 in.5  is bent by couples M0 into a 
circular arc with a downward deflection d at the midpoint 
(Fig. 5-8b). The longitudinal normal strain (elongation) on the 
bottom surface of the beam is 0.00125, and the distance from the 
neutral surface to the bottom surface of the beam is 3.0 in.

Determine the radius of curvature r, the curvature k, and the 
deflection d of the beam.

Note: This beam has a relatively large deflection because its 
length is large compared to its height L h( / 16)5 , and the strain 
of 0.00125 is also large. (This is about the same as the yield strain 
for ordinary structural steel.)

Solution:
Use a four-step problem-solving approach. Combine steps as 
needed for an efficient solution.

Part (a): Curvature.

1, 2.  �Conceptualize [hypothesize, sketch], Categorize [simplify, 
classify]: Since the longitudinal strain at the bottom sur-
face of the beam x( 0.00125)« 5  and the distance from 
the neutral surface to the bottom surface y( 3.0 in.)5 2  
are known, use Eq. (5-5) to calculate both the radius of 
curvature and the curvature.

Example 5-1
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Figure 5-8
Example 5-1: Beam in pure  
bending: (a) beam with loads  
and (b) deflection curve
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452	 Chapter 5  Stresses in Beams (Basic Topics)

	3.	 Analyze [evaluate; select relevant equations, carry out mathematical solution]: 
Rearrange Eq. (5-5) and substitute numerical values to get

	
y

x

r
«

k
r

5 2 5
2

5 5 5 5 23.0 in.
0.00125

2400 in. 200 ft
1

0.0050 ft 1	

	4.	 Finalize [conclude; examine answer—Does it make sense? Are units correct? 
How does it compare to similar problem solutions?]: These results show that 
the radius of curvature is extremely large compared to the length of the beam 
even when the strain in the material is large. If, as usual, the strain is less, the 
radius of curvature is even larger.

Part (b): Deflection.

1, 2.  �Conceptualize, Categorize: As pointed out in Section 5.3, a constant bending 
moment (pure bending) produces constant curvature throughout the length of 
a beam. Therefore, the deflection curve is a circular arc. From Fig. 5-8b,  
the distance from the center of curvature O9 to the midpoint C9 of the deflected 
beam is the radius of curvature r, and the distance from O9 to point C on the 
x axis is r cos u, where u is angle BO C9 . This leads to the expression for the 
deflection at the midpoint of the beam:

	  d r u5 2(1 cos )	 (5-6)

For a nearly flat curve, assume that the distance between supports is the same 
as the length of the beam itself. Therefore, from triangle BO C9 ,

	
L

u
r

5sin
/2

	 (5-7)

	3.	 Analyze: Substitute numerical values to obtain

	 u 5 5sin
(8.0 ft)(12 in./ft)

2(2400 in.)
0.0200	

and

	 u 5 5 80.0200 rad 1.146 	

For practical purposes, consider sin u and u (radians) to be equal numerically 
because u is a very small angle.

Now substitute into Eq. (5-6) for the deflection and obtain

	 d r u5 2 5 2 5(1 cos ) (2400 in.)(1 0.999800) 0.480 in.	

	4.	 Finalize: This deflection is very small compared to the length of the beam, as 
shown by the ratio of the span length to the deflection:

	
L
d

5 5
(8.0 ft)(12 in./ft)

0.480 in.
200	
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5.5	 Normal Stresses in Beams  
(Linearly Elastic Materials)
Longitudinal strains x«  in a beam in pure bending were investigated in the preced-
ing section  [see Eq. (5-5) and Fig. 5-7]. Since longitudinal elements of a beam are 
subjected only to tension or compression, now use the stress-strain curve for the 
material to determine the stresses from the strains. The stresses act over the entire 
cross section of the beam and vary in intensity, depending upon the shape of the 
stress-strain diagram and the dimensions of the cross section. Since the x direction 
is longitudinal (Fig. 5-7a), use the symbol x  to denote these stresses.

The most common stress-strain relationship encountered in engineering 
is the equation for a linearly elastic material. For such materials, substitute 
Hooke’s law for uniaxial stress E( ) «5  into Eq. (5-5) and obtain

	 E
Ey

E yx x «
r

k5 5 2 5 2 	 (5-8)

This equation shows that the normal stresses acting on the cross section vary 
linearly with the distance y from the neutral surface. This stress distribution is 
pictured in Fig. 5-9a for the case in which the bending moment M is positive and 
the beam bends with positive curvature.

When the curvature is positive, the stresses x  are negative (compression) 
above the neutral surface and positive (tension) below it. In the figure, com-
pressive stresses are indicated by arrows pointing toward the cross section and 
tensile stresses are indicated by arrows pointing away from the cross section.

In order for Eq. (5-8) to be of practical value, locate the origin of the coordi-
nates so that you can determine the distance y. In other words, locate the neu-
tral axis of the cross section. You also need to obtain a relationship between the 
curvature and the bending moment—so that you can substitute into Eq. (5-8) 
and obtain an equation relating the stresses to the bending moment. These two 
objectives can be accomplished by determining the resultant of the stresses x  
acting on the cross section.

In general, the resultant of the normal stresses consists of two stress resul-
tants: (1) a force acting in the x direction and (2) a bending couple acting about 
the z axis. However, the axial force is zero when a beam is in pure bending. 
Therefore, write the following equations of statics: (1) The resultant force in 
the x direction is equal to zero, and (2) the resultant moment is equal to the 
bending moment M. The first equation gives the location of the neutral axis, 
and the second gives the moment-curvature relationship.

This confirms that the deflection curve is nearly flat in spite of the large 
strains. Of course, in Fig. 5-8b, the deflection of the beam is highly exagger-
ated for clarity.

Note: The purpose of this example is to show the relative magnitudes of the 
radius of curvature, length of the beam, and deflection of the beam. However, 
the method used for finding the deflection has little practical value because it is 
limited to pure bending, which produces a circular deflected shape. More use-
ful methods for finding beam deflections are presented in Chapter 9.
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Figure 5-9
Normal stresses in a beam of 
linearly elastic material:  
(a) side view of beam showing 
distribution of normal stresses 
and (b) cross section of beam 
showing the z axis as the neutral 
axis of the cross section

93347_ch05_hr_445-552.indd   453 10/25/16   5:28 PM



454	 Chapter 5  Stresses in Beams (Basic Topics)

Location of Neutral Axis
To obtain the first equation of statics, consider an element of area dA in the cross 
section (Fig. 5-9b). The element is located at a distance y from the neutral axis; 
therefore, the stress x  acting on the element is given by Eq. (5-8). The force acting 
on the element is equal to dAx  and is compressive when y is positive. Because 
there is no resultant force acting on the cross section, the integral of dAx  over the 
area A of the entire cross section must vanish; thus, the first equation of statics is

	  k5 2 5dA E ydA
A x A

0∫ ∫ 	 (5-9a)

Because the curvature k and modulus of elasticity E are nonzero constants at 
any given cross section of a bent beam, they are not involved in the integration 
over the cross-sectional area. Therefore, drop them from the equation and obtain

	 5ydA
A

0∫ 	 (5-9b)

This equation states that the first moment of the area of the cross section, when 
evaluated with respect to the z axis, is zero. In other words, the z axis must pass 
through the centroid of the cross section.2

The z axis is also the neutral axis, so

The neutral axis passes through the centroid of the cross-sectional area 
when the material follows Hooke’s law and there is no axial force acting on 
the cross section.

This observation makes it relatively simple to determine the position  
of the neutral axis.

As explained in Section 5.1, this discussion is limited to beams for which 
the y axis is an axis of symmetry. Consequently, the y axis also passes through 
the centroid. Therefore,

The origin O of coordinates (Fig. 5-9b) is located at the centroid of the 
cross-sectional area.

Because the y axis is an axis of symmetry of the cross section, the y axis is a 
principal axis (see Appendix D, Section D.8, for a discussion of principal axes). 
Since the z axis is perpendicular to the y axis, it too is a principal axis. Thus, 
when a beam of linearly elastic material is subjected to pure bending, the y and 
z axes are principal centroidal axes.

Moment-Curvature Relationship
The second equation of statics expresses the fact that the moment resultant of the 
normal stresses x  acting over the cross section is equal to the bending moment M 
(Fig. 5-9a). The element of force dAx  acting on the element of area dA (Fig. 5-9b) 
is in the positive direction of the x axis when x  is positive and in the negative 
direction when x  is negative. Since the element dA is located above the neutral 
axis, a positive stress x  acting on that element produces an element of moment 
equal to ydAx . This element of moment acts opposite in direction to the positive 
bending moment M shown in Fig. 5-9a. Therefore, the elemental moment is

	 dM ydAx5 2 	

2Centroids and first moments of areas are discussed in Appendix D, Sections D.1 and D.2.
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The integral of  all such elemental moments over the entire cross-sectional 
area A must equal the bending moment:

	 52M ydA
A x∫ 	 (5-10a)

or, upon substituting for x  from Eq. (5-9),

	 k k5 5M Ey dA E y dA
A A

2 2∫ ∫ 	 (5-10b)

This equation relates the curvature of the beam to the bending moment M.
Since the integral in the preceding equation is a property of the cross-

sectional area, it is convenient to rewrite the equation as

	 M EIk5 	 (5-11)

in which

	 5I y dA
A

2∫ 	 (5-12)

This integral is the moment of inertia of the cross-sectional area with respect to the 
z axis (that is, with respect to the neutral axis). Moments of inertia are always pos-
itive and have dimensions of length to the fourth power; for instance, typical USCS 
units are in4 and typical SI units are mm4 when performing beam calculations.3

Equation (5-11) now can be rearranged to express the curvature in terms of 
the bending moment in the beam:

	
M
EI

k
r

5 5
1

	 (5-13)

Known as the moment-curvature equation, Eq. (5-13) shows that the curvature 
is directly proportional to the bending moment M and inversely proportional 
to the quantity EI, which is called the flexural rigidity of  the beam. Flexural 
rigidity is a measure of  the resistance of  a beam to bending, that is, the larger 
the flexural rigidity, the smaller the curvature for a given bending moment.

Comparing the sign convention for bending moments (Fig. 4-19) with that for 
curvature (Fig. 5-6), note that a positive bending moment produces positive cur-
vature and a negative bending moment produces negative curvature (see Fig. 5-10).

Flexure Formula
Now that the neutral axis has been located and the moment-curvature relation-
ship has been derived, determine the stresses in terms of the bending moment. 
Substitute the expression for curvature [Eq. (5-13)] into the expression for the 
stress x  [Eq. (5-8)] to get

	
My
Ix 5 2 	 (5-14)

This equation, called the flexure formula, shows that the stresses are directly pro-
portional to the bending moment M and inversely proportional to the moment 
of inertia I of the cross section. Also, the stresses vary linearly with the distance y 
from the neutral axis, as previously observed. Stresses calculated from the flexure 
formula are called bending stresses or flexural stresses.

3Moments of inertia of areas are discussed in Appendix D, Section D.3.

y

x

Positive
bending
moment

Negative
bending
moment

O

y

x

Negative
curvature

Positive
curvature

O

+M +M

−M −M

Figure 5-10
Relationships between signs of 
bending moments and signs of 
curvatures
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456	 Chapter 5  Stresses in Beams (Basic Topics)

If the bending moment in the beam is positive, the bending stresses will be 
positive (tension) over the part of the cross section where y is negative, that is, 
over the lower part of the beam. The stresses in the upper part of the beam will 
be negative (compression). If the bending moment is negative, the stresses will 
be reversed. These relationships are shown in Fig. 5-11.

Maximum Stresses at a Cross Section
The maximum tensile and compressive bending stresses acting at any given cross 
section occur at points located farthest from the neutral axis. Denote by c1 and 
c2 the distances from the neutral axis to the extreme elements in the positive 
and negative y directions, respectively (see Fig. 5-9b and Fig. 5-11). Then the 
corresponding maximum normal stresses 1  and 2  (from the flexure formula) are

	
Mc

I
M
S

Mc
I

M
S

 5 2 5 2 5 51
1

1
2

2

2

	 (5-15a,b)

in which

	 S
I
c

S
I
c

5 51
1

2
2

	 (5-16a,b)

The quantities S1 and S2 are known as the section moduli of the cross-sectional area. 
From [Eqs. (5-16a and b)], note that each section modulus has dimensions of a 
length to the third power (for example, in3 or mm3). Also note that the distances c1  
and c2 to the top and bottom of the beam are always taken as positive quantities.

The advantage of expressing the maximum stresses in terms of section mod-
uli arises from the fact that each section modulus combines the beam’s relevant 
cross-sectional properties into a single quantity. Then this quantity can be listed 
in tables and handbooks as a property of the beam, which is a convenience to 
designers. (Design of beams using section moduli is explained in the next section.)

Doubly Symmetric Shapes
If  the cross section of a beam is symmetric with respect to the z axis as well as 
the y axis (doubly symmetric cross section), then c c c1 25 5 , and the maximum 
tensile and compressive stresses are equal numerically:

	
Mc
I

M
S

M
S

  5 2 5 2 5 2 5or1 2 max 	 (5-17a,b)

σ1

Compressive stresses

Tensile stresses

Positive bending
moment

+M

σ2

O
x

y

c2

c1 

(a)

Compressive stresses

Tensile stresses

Negative bending
moment

−M

σ2

O
x

y

c2

c1 

(b)

σ1

Figure 5-11
Relationships between signs of 
bending moments and directions 
of normal stresses: (a) positive 
bending moment and  
(b) negative bending moment
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in which

	 S
I
c

5 	 (5-18)

is the only section modulus for the cross section.
For a beam of rectangular cross section with width b and height h (Fig. 5-12a), 

the moment of inertia and section modulus are

	
12 6

3 2

I
bh

S
bh

5 5 	 (5-19a,b)

For a circular cross section of diameter d (Fig. 5-12b), these properties are

	
64 32

4 3

I
d

S
dp p

5 5 	 (5-20a,b)

Properties of other doubly symmetric shapes, such as hollow tubes (either rect-
angular or circular) and wide-flange shapes, can be readily obtained from the 
preceding formulas.

Properties of Beam Cross Sections
Moments of inertia of many plane figures are listed in Appendix E for conve-
nient reference. Also, the dimensions and properties of standard sizes of steel 
and wood beams are listed in Appendixes F and G and in many engineering 
handbooks, as explained in more detail in the next section.

For other cross-sectional shapes, determine the location of the neutral axis, the 
moment of inertia, and the section moduli by direct calculation, using the tech-
niques described in Appendix D. This procedure is illustrated later in Example 5-4.

Limitations
 The analysis presented in this section is for the pure bending of prismatic beams 
composed of homogeneous, linearly elastic materials. If  a beam is subjected to 
nonuniform bending, the shear forces will produce warping (or out-of-plane dis-
tortion) of the cross sections. Thus, a cross section that was plane before bending 
is no longer plane after bending. Warping due to shear deformations greatly 
complicates the behavior of  the beam. However, detailed investigations show 
that the normal stresses calculated from the flexure formula are not significantly 
altered by the presence of shear stresses and the associated warping (Ref. 2-1, 
pp. 42 and 48). Thus, you may justifiably use the theory of  pure bending for 
calculating normal stresses in beams subjected to nonuniform bending.4

The flexure formula gives results that are accurate only in regions of the 
beam where the stress distribution is not disrupted by changes in the shape of 
the beam or by discontinuities in loading. For instance, the flexure formula is 
not applicable near the supports of a beam or close to a concentrated load. Such 
irregularities produce localized stresses, or stress concentrations, that are much 
greater than the stresses obtained from the flexure formula (see Section 5.13).

4Beam theory began with Galileo Galilei (1564–1642), who investigated the behavior of 
various types of beams. His work in mechanics of materials is described in his famous 
book Two New Sciences, first published in 1638 (Ref. 5-2). Although Galileo made 
many important discoveries regarding beams, he did not obtain the stress distribution 
used today. Further progress in beam theory was made by Mariotte, Jacob Bernoulli, 
Euler, Parent, Saint-Venant, and others (Ref. 5-3).

Figure 5-12
Doubly symmetric cross-
sectional shapes
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458	 Chapter 5  Stresses in Beams (Basic Topics)

A high-strength steel wire with a diameter d is bent around a cylindrical drum of 
radius R0 (Fig. 5-13).

Determine the bending moment M and maximum bending stress max in the wire, 
assuming d 4 mm5  and R 0.5 m0 5 . (The steel wire has a modulus of elasticity 
E 200 GPa5  and a proportional limit 1200 MPap1 5 .)

Example 5-2

d

R0

C

Figure 5-13
Example 5-2: Wire  
bent around a drum

Solution:
Use a four-step problem-solving approach.
	1.	 Conceptualize: The first step in this example is to determine the radius of cur-

vature r of the bent wire. Knowing r, then find the bending moment and maxi-
mum stresses.

	2.	 Categorize:

Radius of curvature: The radius of curvature of the bent wire is the distance 
from the center of the drum to the neutral axis of the cross section of the wire:

	
20R
d

r 5 1 	 (5-21)

Bending moment: The bending moment in the wire may be found from the 
moment-curvature relationship (Eq. 5-13):

	
2

2 0

M
EI EI

R dr
5 5

1
	 (5-22)

in which I is the moment of inertia of the cross-sectional area of the wire. 
Substitute for I in terms of the diameter d of the wire [Eq. (5-20a)] to get

	
32(2 )

4

0

M
Ed

R d
p

5
1

	 (5-23)

This result was obtained without regard to the sign of the bending moment, 
since the direction of bending is obvious from the figure.
Maximum bending stresses: The maximum tensile and compressive stresses, 
which are equal numerically, are obtained from the flexure formula as given  
by Eq. (5-17b):

	 max
M
S

 5 	
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in which S is the section modulus for a circular cross section. Substitute for M 
from Eq. (5-23) and for S from Eq. (5-20b) to get

	
2max

0

Ed
R d

 5
1

	 (5-24)

This same result can be obtained directly from Eq. (5-8) by replacing y with d/2 
and substituting for r from Eq. (5-21).

Inspection of Fig. 5-13 reveals that the stress is compressive on the lower (or 
inner) part of the wire and tensile on the upper (or outer) part.

	3.	 Analyze:

Numerical results: Now substitute the given numerical data into Eqs. (5-23) and 
(5-24) and obtain

	
32(2 )

(200 GPa)(4 mm)
32[2(0.5 m) 4 mm]

5.01 N m
4

0

4

M
Ed

R d
p p

5
1

5
1

5 ? 	

	
2

(200 GPa)(4 mm)
2(0.5 m) 4 mm

797 MPamax
0

Ed
R d

 5
1

5
1

5 	

	4.	 Finalize: Maximum stress max  is less than the proportional limit of the steel 
wire; therefore, the calculations are valid.

Note: Because the radius of the drum is large compared to the diameter of 
the wire, d in comparison with R2 0 in the denominators of the expressions for 
M and max  can be safely disregarded. Then Eqs. (5-23) and (5-24) give

	 5.03 N m 800 MPamaxM 5 ? 5 	

These results are on the conservative side and differ by less than 1% from the 
more precise values.

A simple beam with an overhang (from Examples 4-5 and 4-9) is shown in Fig. 5-14. 
A uniform load with an intensity q 400 lb/ft5  acts throughout the length of the beam, and 
a concentrated load P 2400 lb5  acts at a point 9 ft from the left-hand support. Uniform 
load q includes the weight of the beam. The beam is constructed of structural glued and 
laminated timber, has a cross section width of  b 5 in.5 , and has a height of h 22 in.5  
(Fig. 5-15).

(a)	 Determine the maximum tensile and compressive stresses in the beam due to 
bending.

(b)	If load q is unchanged, find the maximum permissible value of load P if the 
allowable normal stress in tension and compression is a 1875 psi 5 .

Example 5-3
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460	 Chapter 5  Stresses in Beams (Basic Topics)

Solution:
Use a four-step problem-solving approach. Combine steps as needed for an efficient 
solution.
Part (a): Maximum normal stresses.
1, 2.  �Conceptualize, Categorize: Begin the analysis by drawing the shear-force and 

bending-moment diagrams (Fig. 5-16); then determine the maximum bending 
moment, which occurs under the concentrated load. This is detailed in Example 
4-9, and the resulting diagrams are shown in Fig. 5-16. The moment diagram 
shows that M 37,800 lb-ftmax 5  at 9 ft to the right of support A. The maximum 
bending stresses in the beam occur at the cross section of the maximum moment.

Section modulus: The section modulus for the rectangular cross-sectional area 
in Fig. 5-15 is from Eq. (5-19b):

	
6

1
6

(5 in.)(22 in.) 403.3 in
2

2 3S
bh

5 5 5 	 (a)

	3.	 Analyze:
Maximum stresses: The maximum tensile and compressive stresses are 
obtained from Eq. (5-17):

	

(37,800 lb-ft)(12 in./ft)

403.3 in
1125 psi

1125 psi

max
3

max

M

S
M

S

t

c





5 5 5

5 2 5 2

	  (b)

A

P = 2400 lb

q = 400 lb/ft

B

9 ft

15 ft

24 ft 6 ft

D

x

C

Figure 5-14
Beam with an overhang  
and uniform and concentrated  
loads

h = 22 in.

b = 5 in.

Figure 5-15
Beam cross section

Mmax = 37,800 lb-ft
30,600 lb-ft

1.252 ft

–6000 lb

2400 lb2400 lb

–2400 lb

–7200 lb-ft

6000 lb

B C

D

A 0

0

0

0

(a) Shear
diagram

(b) Moment
diagram

In�ection point

6 ft

6 ft 9 ft

9 ft

Figure 5-16
(a, b) Shear and moment  
diagrams (from Example 4-9)
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	4.	 Finalize: The moment diagram is plotted on the compression side of the beam, 
so most of span AB has compressive stress on the top and tension stress on 
the bottom of the beam. The reverse is true for the portion of the beam to the 
right of the inflection point, which includes overhang segment BC.

Part (b): Maximum permissible load P.

1, 2.  �Conceptualize, Categorize: The normal stresses in Eq. (b) at the location 
of the maximum moment are well below the allowable value of 1875 psi, 
so the beam can carry a much larger value of load P than that applied in 
part (a). Let the distance from support A to load P be a 9 ft5 ,  
span AB length 24 ftL 5 , and the uniform load be unchanged at 
q 400 lb/ft5 .

	3.	 Analyze: Apply concentrated load P and uniform load q and solve for the 
reaction at A:

	
15
32





R P

L a
L

qLA 5
2

1 	 (c)

The maximum moment is at distance a from support A and is written as

	
2max

2

M R a
qa

A5 2 	 (d)

Equate Mmax  to Sa( )( ) 63,016 lb-ft 5 , insert numerical values in Eqs. (c) 
and (d), and solve for P 6883 lbmax 5 .�
Alternate solution: Apply additional load PD  to increase the maximum 
moment from 37,800 lb-ft to 63,016 lb-ft, that is, M 25,216 lb-ftD 5 . The 
required additional load PD  is computed using Eq. (4-13), which gives the 
moment at the location of a concentrated load:

	
( )

24 ft
9 ft(24 ft 9 ft)

(25,216 lb-ft) 4483 lbP
L

a L a
MD 5

2
D 5

2
5 	 (e)

Add PD  to the load P 2400 lb5  from part (a) to get

	 2400 lb 4483 lb 6883 lbmaxP P P5 1 D 5 1 5 	  (f) 

	4.	 Finalize: Check that the maximum permissible value of P produces normal 
stresses at the allowable level at the point of maximum moment. Substitute 
Pmax into Eqs. (c) and (d) to find that RA 8802 lb5  and M 63,016 lb-ftmax 5 . 
Using these values, the stresses at the point of load Pmax application are

	
(63,016 lb-ft)(12 in/ft)

403.3 in
1875 psimax

3

M

St c 5 2 5 5 5 	 (g)
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The beam ABC shown in Fig. 5-17a has simple supports at A and B and an overhang 
from B to C. The length of the span is L 3.0 m5 , and the length of the overhang is 
L/2 1.5 m5 . A uniform load of intensity q 3.2 kN/m5  acts throughout the entire 
length of the beam (4.5 m).

The beam has a cross section of channel shape with a width of  b 300 mm5  and 
height of h 80 mm5  (Fig. 5-18). The web thickness is  t 12 mm5 , and the average thick-
ness of the sloping flanges is the same. For the purpose of calculating the properties of 
the cross section, assume that the cross section consists of three rectangles, as shown in 
Fig. 5-18b.

(a)	 Determine the maximum tensile and compressive stresses in the beam due to 
the uniform load.

(b)	Find the maximum permissible value of uniform load q (in kN/m) if allowable 
stresses in tension and compression are aT 110 MPa 5  and aC 92 MPa 5 , 
respectively.

Example 5-4

A
B

C

L = 3.0 m L/2

q = 3.2 kN/m

M

0

(a) Beam with an overhang

(b) Shear diagram

(c) Moment diagram

V
qL = 3.6 kN3

8

−5qL/8 = –6.0 kN

0

Mpos = qL2 = 2.025 kN·m9
128

3
8

L = 1.125 m3
8

L = 1.125 m

= 4.8 kNqL
2

Mneg = = –3.6 kN·m
–qL2

8

Figure 5-17
Example 5-4: Stresses  
in a beam with an  
overhang 

93347_ch05_hr_445-552.indd   462 10/25/16   5:28 PM



	 Section 5.5  Normal Stresses in Beams (Linearly Elastic Materials) 	 463

Solution:
Use a four-step problem-solving approach. Combine steps as needed for an efficient 
solution.

Part (a): Maximum tensile and compressive stresses.

1, 2.  �Conceptualize, Categorize: Reactions, shear forces, and bending moments 
are computed in the analysis of this beam. First, find the reactions at sup-
ports A and B using statics, as described in Chapter 4. The results are

	
3
8

3.6 kN R
9
8

10.8 kNR qL qLA B5 5 5 5 	

From these values, construct the shear-force diagram (Fig. 5-17b). Note that 
the shear force changes sign and is equal to zero at two locations: (1) at a dis-
tance of 1.125 m from the left-hand support and (2) at the right-hand reaction.

Next, draw the bending-moment diagram shown in Fig. 5-17c. Both the max-
imum positive and maximum negative bending moments occur at the cross 
sections where the shear force changes sign. These maximum moments are

	
9

128
2.025 kN m

8
3.6 kN mpos

2
neg

2

M qL M
qL

5 5 ? 5
2

5 2 ? 	

respectively.
Neutral axis of the cross section (Fig. 5-18b): The origin O of the y-z coordinates 
is placed at the centroid of the cross-sectional area; therefore, the z axis becomes 
the neutral axis of the cross section. The centroid is located by using the tech-
niques described in Appendix D, Section D.2, as follows.

h = 
80 mm

h = 
80 mm

(a) (b)

y

O

b = 300 mm

t = 12 mm

t = 12 mm

t = 12 mm

t = 12 mm t = 
 12 mm

z
y2

y1

d1

c1

c2

A2

A1

A3

y

ZZ

Oz

b = 300 mm

Figure 5-18
Cross section of beam discussed in Example 5-4: (a) actual shape and (b) idealized shape for use in analysis (the thickness 
of the beam is exaggerated for clarity) 

First, divide the area into three rectangles A A A( , , and )1 2 3 . Second, estab-
lish a reference axis Z–Z across the upper edge of the cross section, and let y1 
and y2 be the distances from the Z–Z axis to the centroids of areas A1 and A2, 
respectively. Then the calculations for locating the centroid of the entire chan-
nel section (distances c1 and c2) are
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Area 1: /2 6 mm

( 2 )( ) (276 mm)(12 mm) 3312 mm

Area 2: /2 40 mm

(80 mm)(12 mm) 960 mm

Area 3:

2
2

(6 mm)(3312 mm ) 2(40 mm)(960 mm )

3312 mm 2(960 mm )
18.48 mm

80 mm 18.48 mm 61.52 mm

1

1
2

2

2
2

3 2 3 2

1
1 1 2 2

1 2

2 2

2 2

2 1

y t

A b t t

y h

A ht

y y A A

c
y A

A
y A y A

A A

c h c

i i

i

5 5

5 2 5 5

5 5

5 5 5

5 5

5
S

S
5

1

1

5
1

1
5

5 2 5 2 5

Thus, the position of the neutral axis (the z axis) is determined.

Moment of inertia: In order to calculate the stresses from the flexure formula, 
determine the moment of inertia of the cross-sectional area with respect to 
the neutral axis. These calculations require the use of the parallel axis theo-
rem (see Appendix D, Section D.4).

Beginning with area A1, obtain its moment of inertia Iz( )1 about the z axis 
from the equation

	 ( ) ( )1 1 1 1
2l l A dz c5 1 	 (a)

In this equation, Ic( )1 is the moment of inertia of area A1 about its own 
centroidal axis:

	 ( )
1

12
( 2 )( )

1
12

(276 mm)(12 mm) 39,744 mm1
3 3 4I b t tc 5 2 5 5 	

and d1 is the distance from the centroidal axis of area A1 to the z axis:

	 /2 18.48 mm 6 mm 12.48 mm1 1d c t5 2 5 2 5 	

Therefore, the moment of inertia of area A1 about the z axis [from Eq. (a)] is

	 ( ) 39,744 mm (3312 mm )(12.48 mm) 555,600 mm1
4 2 2 4Iz 5 1 5 	

Proceed in the same manner for areas A2 and A3 to get

	 I Iz z( ) ( ) 956,600 mm2 3
45 5 	

Thus, the centroidal moment of inertia Iz of the entire cross-sectional area is

	 I I I Iz z z z( ) ( ) ( ) 2.469 10 mm1 2 3
6 45 1 1 5 3 	

Section moduli: The section moduli for the top and bottom of the beam, respec-
tively, are

	 133,600 mm 40,100 mm1
1

3
2

2

35 5 5 5S
I
c S

I
c

z z 	

[see Eqs. (5-16a and b)]. With the cross-sectional properties determined, now 
calculate the maximum stresses from Eqs. (5-15a and b).
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	3.	 Analyze:

Maximum stresses: At the cross section of maximum positive bending moment, 
the largest tensile stress occurs at the bottom of the beam ( )2  and the largest 
compressive stress occurs at the top ( )1 . Thus, from Eqs. (5-15b) and (5-15a), 
respectively, you get

M

S

M

S

t

c

2.025 kN m

40,100 mm
50.5 MPa

2.025 kN m

133,600 mm
15.2 MPa

2
pos

2
3

1
pos

1
3

 

 

5 5 5
?

5

5 5 2 5 2
?

5 2

Similarly, the largest stresses at the section of maximum negative moment are

3.6 kN m

133,600 mm
26.9 MPa

3.6 kN m

40,100 mm
89.8 MPa

1
neg

1
3

2
neg

2
3

 

 

5 5 2 5 2
2 ?

5

5 5 5
2 ?

5 2

M

S

M

S

t

c

	4.	 Finalize: A comparison of these four stresses shows that the largest tensile 
stress in the beam is 50.5 MPa and occurs at the bottom of the beam at the 
cross section of maximum positive bending moment; thus,

	 t( ) 50.5 MPamax 5 	

The largest compressive stress is 289.8 MPa and occurs at the bottom of the 
beam at the section of maximum negative moment:

	 c( ) 89.8 MPamax 5 2 	

Recall that these are the maximum bending stresses due to the uniform load 
acting on the beam.

Part (b): Maximum permissible value of uniform load q.

1, 2.  �Conceptualize, Categorize: Next, find qmax based on the given allowable normal 
stresses, which are different for tension and compression. The allowable com-
pression stress is aC  lower than that for tension, aT , to account for the possi-
bility of local buckling of the flanges of the C shape (if they are in compression).

Use the flexure formula to compute potential values of qmax at four loca-
tions: at the top and bottom of the beam at the location of the maximum pos-
itive moment M( )pos  and at the top and bottom of the beam at the location of 
the maximum negative moment M( )neg . In each case, be sure to use the proper 
value of allowable stress. Assume that the C shape is used in the orientation 
shown in Fig. 5-18 (flanges downward), so at the location of Mpos, the top of 
the beam is in compression and the bottom is in tension, while the opposite is 
true at point B. Using the expressions for Mpos and Mneg and equating each 
to the appropriate product of allowable stress and section modulus, solve for 
possible values of qmax as given here.
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	3.	 Analyze: In beam segment AB at the top of beam,

9
128

so
128

9
( ) 19.42 kN/mpos 1

2
1 1 2 1σM q L S q

L
SaC aC5 5 5 5

In beam segment AB at the bottom of beam,

M q L S q
L

SaT aT
9

128
so

128

9
( ) 6.97 kN/mpos 2

2
2 2 2 2 5 5 5 5

At joint B at the top of beam,

M q L S q
L

SaT aT
1
8

so
8

( ) 13.06 kN/mpos 3
2

1 3 2 1 5 5 5 5

At joint B at bottom of the beam,

1
8

so
8

( ) 3.28 kN/mpos 4
2

2 4 2 2M q L S q
L

SaC aC 5 5 5 5

	4.	 Finalize: From these calculations, the bottom of the beam near joint B (where 
the flange tips are in compression) does indeed control the maximum permissi-
ble value of uniform load q. Hence,

	 q 3.28 kN/mmax 5 	

5.6	 Design of Beams for Bending Stresses
The process of  designing a beam requires that many factors be considered, 
including the type of structure (airplane, automobile, bridge, building, or what-
ever), the materials to be used, the loads to be supported, the environmental 
conditions to be encountered, and the costs to be paid. However, from the 
standpoint of strength, the task eventually reduces to selecting a shape and size 
of beam such that the actual stresses in the beam do not exceed the allowable 
stresses for the material. This section considers only the bending stresses [that is, 
the stresses obtained from the flexure formula, Eq. (5-14)].

When designing a beam to resist bending stresses, begin by calculating the 
required section modulus. For instance, if the beam has a doubly symmetric 
cross section and the allowable stresses are the same for both tension and com-
pression, calculate the required modulus by dividing the maximum bending 
moment by the allowable bending stress for the material [see Eq. (5-17)]:

	 S
Mmax

allow
5 	 (5-25)

The allowable stress is based upon the properties of the material and the desired 
factor of  safety. To ensure that this stress is not exceeded, choose a beam that 
provides a section modulus at least as large as that obtained from Eq. (5-25).
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If the cross section is not doubly symmetric, or if the allowable stresses are 
different for tension and compression, it may be necessary to determine two 
required section moduli—one based upon tension and the other based upon 
compression. Then provide a beam that satisfies both criteria.

To minimize weight and save material, select a beam that has the least 
cross-sectional area while still providing the required section moduli (and also 
meeting any other design requirements that may be imposed).

Beams are constructed in a great variety of shapes and sizes to suit a myr-
iad of purposes. For instance, very large steel beams are fabricated by welding 
(Fig. 5-19), aluminum beams are extruded as round or rectangular tubes, wood 
beams are cut and glued to fit special requirements, and reinforced concrete 
beams are cast in any desired shape by proper construction of the forms.

In addition, beams of steel, aluminum, plastic, and wood can be ordered 
in standard shapes and sizes from catalogs supplied by dealers and manufac-
turers. Readily available shapes include wide-flange beams, I-beams, angles, 
channels, rectangular beams, and tubes.

Beams of Standardized Shapes and Sizes
The dimensions and properties of  many kinds of  beams are listed in engi-
neering handbooks. For instance, in the United States, the shapes and sizes of 
structural-steel beams are standardized by the American Institute of Steel Con-
struction (AISC), which publishes manuals giving their properties in both USCS 
and SI units (Ref. 5-4). The tables in these manuals list cross-sectional dimen-
sions and properties such as weight, cross-sectional area, moment of  inertia, 
and section modulus.

Properties of aluminum and wood beams are tabulated in a similar manner 
and are available in publications of the Aluminum Association (Ref. 5-5) and 
the American Forest and Paper Association (Ref. 5-6).

Abridged tables of steel beams and wood beams are given later in this book for 
use in solving problems using both USCS and SI units (see Appendixes F and G).

Structural-steel sections are given a designation such as W 30 × 211 in USCS 
units, which means that the section is of W shape (also called a wide-flange 
shape) with a nominal depth of 30 in. and a weight of 211 lb per ft of length (see 
Table F-1(a), Appendix F). The corresponding properties for each W shape are 
also given in SI units in Table F-1(b). For example, in SI units, the W 30 2113  
is listed as W 760 3143  with a nominal depth of 760 millimeters and mass of 
314 kilograms per meter of length.

Similar designations are used for S shapes (also called I-beams) and  
C shapes (also called channels), as shown in Tables F-2(a) and F-3(a) in USCS 
units and in Tables F-2(b) and F-3(b) in SI units. Angle sections, or L shapes, 
are designated by the lengths of the two legs and the thickness (see Tables F-4 
and F-5). For example, L 8 6 13 3  [see Table F-5(a)] denotes an angle with 
unequal legs, one of length 8 in. and the other of length 6 in., with a thick-
ness of 1 in. The corresponding label in SI units for this unequal leg angle is 
L 203 152 25.43 3  [see Table F-5(b)].

The standardized steel sections described here are manufactured by rolling, 
a process in which a billet of hot steel is passed back and forth between rolls 
until it is formed into the desired shape.

Aluminum structural sections are usually made by the process of extrusion, 
in which a hot billet is pushed, or extruded, through a shaped die. Since dies are 

Figure 5-19
Welder fabricating a large wide 
flange steel beam
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relatively easy to make and the material is workable; aluminum beams can be 
extruded in almost any desired shape. Standard shapes of wide-flange beams, 
I-beams, channels, angles, tubes, and other sections are listed in the Aluminum 
Design Manual (Ref. 5-5). In addition, custom-made shapes can be ordered.

Most wood beams have rectangular cross sections and are designated by 
nominal dimensions, such as 4 × 8 inches. These dimensions represent the 
rough-cut size of the lumber. The net dimensions (or actual dimensions) of 
a wood beam are smaller than the nominal dimensions if the sides of the 
rough lumber have been planed, or surfaced, to make them smooth. Thus, 
a 4 × 8 wood beam has actual dimensions of 3.5 × 7.25 in. after it has been 
surfaced. Of course, the net dimensions of surfaced lumber should be used in 
all engineering computations. Therefore, net dimensions and the correspond-
ing properties (in USCS units) are given in Appendix G. Similar tables are 
available in SI units.

Relative Efficiency of Various Beam Shapes
One of the objectives in designing a beam is to use the material as efficiently as 
possible within the constraints imposed by function, appearance, manufacturing 
costs, and the like. From the standpoint of strength alone, efficiency in bending 
depends primarily upon the shape of the cross section. In particular, the most 
efficient beam is one in which the material is located as far as practical from the 
neutral axis. The farther a given amount of  material is from the neutral axis,  
the larger the section modulus becomes—and the larger the section modulus, 
the larger the bending moment that can be resisted (for a given allowable stress).

As an illustration, consider a cross section in the form of a rectangle of 
width b and height h (Fig. 5-20a). The section modulus [from Eq. (5-19b)] is

	 S
bh Ah

Ah
6 6

0.167
2

5 5 5 	 (5-26)

where A denotes the cross-sectional area. This equation shows that a rectangular 
cross section of given area becomes more efficient as the height h is increased 
(and the width b is decreased to keep the area constant). Of course, there is a 
practical limit to the increase in height, because the beam becomes laterally 
unstable when the ratio of height to width becomes too large. Thus, a beam of 
very narrow rectangular section will fail due to lateral (sideways) buckling rather 
than to insufficient strength of the material.

Figure 5-20
Cross-sectional shapes of beams
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Next, compare a solid circular cross section of diameter d (Fig. 5-20b) with 
a square cross section of the same area. The side h of a square having the same 
area as the circle is h d( /2) p5 . The corresponding section moduli [from  
Eqs. (5-19b) and (5-20b)] are

	
6 48

0.1160square

3 3
3S

h d
d

p p
5 5 5 	 (5-27a)

	 S
d

d
32

0.0982circle

3
3p

5 5 	 (5-27b)

which gives

	
S

S
1.18square

circle

5 	 (5-28)

This result shows that a beam of square cross section is more efficient in resisting 
bending than is a circular beam of the same area. The reason, of course, is that 
a circle has a relatively larger amount of material located near the neutral axis. 
This material is less highly stressed; therefore, it does not contribute as much to 
the strength of the beam.

The ideal cross-sectional shape for a beam of given cross-sectional area A 
and height h would be obtained by placing one-half of the area at a distance 
h/2 above the neutral axis and the other half at distance h/2 below the neutral 
axis, as shown in Fig. 5-20c. For this ideal shape, obtain

	 2
2 2 4 /2

0.5
2 2









I

A h Ah
S

I
h

Ah5 5 5 5 	 (5-29a,b)

These theoretical limits are approached in practice by wide-flange sections and 
I-sections, which have most of  their material in the flanges (Fig. 5-20d). For 
standard wide-flange beams, the section modulus is approximately

	 S Ah0.35< 	 (5-30)

which is less than the ideal but much larger than the section modulus for a rect-
angular cross section of the same area and height [see Eq. (5-26)].

Another desirable feature of a wide-flange beam is its greater width; hence, 
its greater stability with respect to sideways buckling when compared to a 
rectangular beam of the same height and section modulus. On the other hand, 
there are practical limits to how thin the web can be for a wide-flange beam. 
A web that is too thin is susceptible to localized buckling or it may be over-
stressed in shear (see Section 5.10).

The following four examples illustrate the process of selecting a beam on 
the basis of the allowable stresses. Only the effects of bending stresses (obtained 
from the flexure formula) are considered.

Note: When solving examples and problems that require the selection of a 
steel or wood beam from the tables in the appendixes, use the following rule: 
If several choices are available in a table, select the lightest beam that provides 
the required section modulus.
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A simply supported wood beam with a span length L 12 ft5  carries a uniform 
load q 420 lb/ft5  (Fig. 5-21). The allowable bending stress is 1800 psi, the wood 
weighs 35 lb/ft3, and the beam is supported laterally against sideways buckling 
and tipping.

Select a suitable size for the beam from the table in Appendix G.

Example 5-5

q = 420 lb/ft

L = 12 ft

Figure 5-21
Example 5-5: Design  
of a simply supported  
wood beam

Solution:
Use a four-step problem-solving approach. Combine steps as needed for an efficient 
solution.
1, 2.  �Conceptualize, Categorize: Since the beam weight is not known in advance, 

proceed by trial-and-error:

	 i.	� Calculate the required section modulus based upon the given uniform load.

	ii.	� Select a trial size for the beam.

	iii.	� Add the weight of the beam to the uniform load and calculate a new 
required section modulus.

Check to see that the selected beam is still satisfactory. If it is not, select a larger 
beam and repeat the process.

	3.	 Analyze:

	 i.	 The maximum bending moment in the beam occurs at the midpoint:

	 M
qL

8
(420 lb/ft)(12 ft) (12 in./ft)

8
90,720 lb-in.max

2 2

5 5 5 	

The required section modulus [Eq. (5-25)] is

S
M 90,720 lb-in.

1800 psi
50.40 inmax

allow

3


5 5 5

	ii.	 �From the table in Appendix G, the lightest beam that supplies a section 
modulus of at least 50.40 in3 about axis 1–1 is a 3 3 12 in. beam (nominal 
dimensions). This beam has a section modulus equal to 52.73 in3 and 
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A vertical post 2.5-meters high must support a lateral load P 12 kN5  at its upper 
end (Fig. 5-22). Two plans are proposed—a solid wood post and a hollow aluminum 
tube.

(a)	 What is the minimum required diameter d1 of the wood post if the allowable 
bending stress in the wood is 15 MPa?

(b)	What is the minimum required outer diameter d2 of the aluminum tube if 
its wall thickness is to be one-eighth of the outer diameter and the allowable 
bending stress in the aluminum is 50 MPa?

Example 5-6

weighs 6.8 lb/ft. (Note that Appendix G gives weights of beams based 
upon a density of 35 lb/ft3.)

	iii.	 �The uniform load on the beam now becomes 426.8 lb/ft, and the corre-
sponding required section modulus is

	 S 



(50.40 in )

426.8 lb/ft
420 lb/ft

51.22 in3 35 5 	

	4.	 Finalize: The previously selected beam has a section modulus of 52.73 in3, 
which is larger than the required modulus of 51.22 in3.

Therefore, a 3 × 12 in. beam is satisfactory.�
Note: If the weight density of the wood is other than 35 lb/ft3, compute the 

weight of the beam per linear foot by multiplying the value in the last column 
in Appendix G by the ratio of the actual weight density to 35 lb/ft3.

P = 12 kN P = 12 kN

h = 2.5 m h = 2.5 m

(b)(a)

d1 d2

Figure 5-22
Example 5-6: (a) Solid wood  
post and (b) aluminum tube
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Solution:
Use a four-step problem-solving approach. Combine steps as needed for an efficient 
solution.

	1.	 Conceptualize:

Maximum bending moment: The maximum moment occurs at the base of the 
post and is equal to the load P times the height h; thus,

M Ph (12 kN)(2.5 m) 30 kN mmax 5 5 5 ?

Part (a): Wood post.

	2, 3.  �Categorize, Analyze: The required section modulus S1 for the wood post [see 
Eqs. (5-20b and 5-25)] is

	 S
d M

32
30 kN m
15 MPa

0.0020 m 2 10 mm1
1
3

max

allow

3 6 3p


5 5 5

?
5 5 3 	

Solving for the diameter gives

	 d 273 mm1 5 	

	4.	 Finalize: The diameter selected for the wood post must be equal to or larger 
than 273 mm if the allowable stress is not to be exceeded.

Part (a): Aluminum tube.

	2, 3.  �Categorize, Analyze: To determine the section modulus S2 for the tube, first 
find the moment of inertia I2 of the cross section. The wall thickness of the 
tube is d /82 ; therefore, the inner diameter is /42 2d d2 , or d0.75 2. Thus, the 
moment of inertia [see Eq. (5-20a)] is

	 I d d d
64

[ (0.75 ) ] 0.033562 2
4

2
4

2
4p

5 2 5 	

The section modulus of the tube is now obtained from Eq. (5-18) as

	
0.03356

/2
0.067122

2 2
4

2
2
35 5 5S

I
c

d
d

d 	

The required section modulus is obtained from Eq. (5-25):

	 S
M 30 kN m

50 MPa
0.0006 m 600 10 mm2

max

allow

3 3 3


5 5

?
5 5 3 	

Equate the two preceding expressions for the section modulus, then solve for 
the required outer diameter:

	 d






600 10 mm
0.06712

208 mm2

3 3 1/3

5
3

5 	

	4.	 Finalize: The corresponding inner diameter is 0.75(208 mm), or 156 mm.
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A simple beam AB of span length 21 ft must support a uniform load 
q 2000 lb/ft5  distributed along the beam in the manner shown in Fig. 5-23a.

Considering both the uniform load and the weight of the beam, and also 
using an allowable bending stress of 18,000 psi, select a structural steel beam 
of wide-flange shape to support the loads.

Example 5-7

(a)

A B

12 ft 6 ft3 ft

q = 2000 lb/ft q = 2000 lb/ft

RA RB
(b)

x1

V
(lb)

0

18,860

−5140

−17,140

Figure 5-23
Example 5-7: Design  
of a simple beam with  
partial uniform loads

Solution:
Use a four-step problem-solving approach. Combine steps as needed for an efficient 
solution.
1, 2.  �Conceptualize, Categorize: In this example, proceed as follows:

	 i.	� Find the maximum bending moment in the beam due to the uniform 
load.

	ii.	 Knowing the maximum moment, find the required section modulus.

	iii.	� Select a trial wide-flange beam from Table F-1 in Appendix F and obtain 
the weight of the beam.

	iv.	� With the weight known, calculate a new value of the bending moment 
and a new value of the section modulus.

Determine whether the selected beam is still satisfactory. If it is not, select 
a new beam size and repeat the process until a satisfactory size of beam has 
been found.

Maximum bending moment: To assist in locating the cross section of 
maximum bending moment, construct the shear-force diagram (Fig. 5-23b) 
using the methods described in Chapter 4. As part of that process, determine 
the reactions at the supports:

	 R RA B18,860 lb 17,140 lb5 5 	

The distance x1 from the left-hand support to the cross section of zero shear 
force is obtained from

	 V R qxA 015 2 5 	
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which is valid in the range 0 ≤ x ≤ 12 ft. Solve for x1 to get

	 x
R
q
A 18,860 lb

2000 lb/ft
9.430 ft1 5 5 5 	

which is less than 12 ft; therefore, the calculation is valid.
The maximum bending moment occurs at the cross section where the shear 

force is zero; therefore,

	 M R x
qx

A 2
88,920 lb-ftmax 1

1
2

5 2 5 	

	3.	 Analyze:

Required section modulus: The required section modulus (based only upon the 
load q) is obtained from Eq. (5-25):

	 S
M (88,920 lb-ft)(12 in./ft)

18,000 psi
59.3 inmax

allow

3


5 5 5 	

Trial beam: Now turn to Table F-1 and select the lightest wide-flange beam 
having a section modulus greater than 59.3 in3. The lightest beam that pro-
vides this section modulus is W 12 × 50 with S 64.7 in35 . This beam weighs 
50 lb/ft (Recall that the tables in Appendix F are abridged, so a lighter beam 
may actually be available.)

Now recalculate the reactions, maximum bending moment, and required 
section modulus with the beam loaded by both the uniform load q and its own 
weight. Under these combined loads the reactions are

	 R RA B19,380 lb 17,670 lb5 5 	

and the distance to the cross section of zero shear becomes

	 x
19,380 lb
2050 lb/ft

9.454 ft1 5 5 	

The maximum bending moment increases to 91,610 lb-ft, and the new required 
section modulus is

	 S
M (91,610 lb-ft)(12 in./ft)

18,000 psi
61.1 inmax

allow

3


5 5 5 	

	4.	 Finalize: Thus, the W 12 × 50 beam with section modulus S 64.7 in35  is still 
satisfactory.�

Note: If the new required section modulus exceeded that of the W 12 × 50 
beam, a new beam with a larger section modulus would be selected and the 
process repeated.
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A temporary wood dam is constructed of horizontal planks A 
supported by vertical wood posts B that are sunk into the ground 
so that they act as cantilever beams (Fig. 5-24). The posts are of 
square cross section (dimensions b × b) and spaced at distance 
s 0.8 m5 , center to center. Assume that the water level behind the 
dam is at its full height h 2.0 m5 .

Determine the minimum required dimension b of the posts 
if the allowable bending stress in the wood is 8.0 MPaallow 5 .

Solution:
Use a four-step problem-solving approach.
1.  �Conceptualize:

Loading diagram: Each post is subjected to a triangularly dis-
tributed load produced by the water pressure acting against 
the planks. Consequently, the loading diagram for each post is 
triangular (Fig. 5-24c). The maximum intensity q0 of the load 
on the posts is equal to the water pressure at depth h times the 
spacing s of the posts:

	 q hs0 5 	 (a)

in which  is the specific weight of water. Note that q0 has 
units of force per unit distance,  has units of force per unit 
volume, and both h and s have units of length.

2.  �Categorize:

Section modulus: Since each post is a cantilever beam, the 
maximum bending moment occurs at the base and is given by

	 M
q h h h s



2 3 6max

0
3

5 5 	 (b)

Therefore, the required section modulus [Eq. (5-25)] is

	 S
M h s

6
max

allow

3

allow




5 5 	 (c)

	3.  �Analyze: For a beam of square cross section, the section modulus is S b /635  
[see Eq. (5-19b)]. Substitute this expression for S into Eq. (c) to get a formula for 
the cube of the minimum dimension b of the posts:

	 b
h s3

3

allow




5 	 (d)

Example 5-8

h

b

b

b

B

B

B

B

A

A

s

h

(a) Top view

(c) Loading diagram

(b) Side view

q0

Figure 5-24
Example 5-8: Wood dam with horizontal 
planks A supported by vertical posts B
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Numerical values: Now substitute numerical values into Eq. (d) and obtain

b
(9.81 kN/m )(2.0 m) (0.8 m)

8.0 MPa
0.007848 m 7.848 10 mm3

3 3
3 6 35 5 5 3

from which

	 b 199 mm5 	

	4.	 Finalize: Thus, the minimum required dimension b of the posts is 199 mm. Any 
larger dimension, such as 200 mm, ensures that the actual bending stress is less 
than the allowable stress.

5.7	 Nonprismatic Beams
The beam theories described in this chapter were derived for prismatic beams, 
that is, straight beams having the same cross sections throughout their lengths. 
However, nonprismatic beams are commonly used to reduce weight and improve 
appearance. Such beams are found in automobiles, airplanes, machinery, bridges, 
buildings, tools, and many other applications (Fig. 5-25). Fortunately, the flexure 
formula [Eq. (5-13)] gives reasonably accurate values for the bending stresses 
in nonprismatic beams whenever the changes in cross-sectional dimensions are 
gradual, as in the examples shown in Fig. 5-25.

The manner in which the bending stresses vary along the axis of a nonpris-
matic beam is not the same as for a prismatic beam. In a prismatic beam, the 
section modulus S is constant, so the stresses vary in direct proportion to the 
bending moment (because M S/ 5 ). However, in a nonprismatic beam, the sec-
tion modulus also varies along the axis. Consequently, do not assume that the 
maximum stresses occur at the cross section with the largest bending moment—
sometimes the maximum stresses occur elsewhere, as illustrated in Example 5-9.

(c)

(a)

(b) (d)

Figure 5-25
Examples of nonprismatic beams: (a) street lamp, (b) bridge with tapered girders and piers, (c) wheel strut of a small airplane, and 
(d) wrench handle

93347_ch05_hr_445-552.indd   476 10/25/16   5:29 PM



	 Section 5.7  Nonprismatic Beams	 477

Fully Stressed Beams
To minimize the amount of material and thereby have the lightest possible beam, 
vary the dimensions of the cross sections to have the maximum allowable bend-
ing stress at every section. A beam in this condition is called a fully stressed beam, 
or a beam of constant strength.

Of course, these ideal conditions are seldom attained because of practical 
problems in constructing the beam and the possibility of the loads being dif-
ferent from those assumed in design. Nevertheless, knowing the properties of 
a fully stressed beam can be an important aid when designing structures for 
minimum weight. Familiar examples of structures designed to maintain nearly 
constant maximum stress are leaf springs in automobiles, bridge girders that 
are tapered, and some of the structures shown in Fig. 5-25.

The determination of the shape of a fully stressed beam is illustrated in 
Example 5-10.

A tapered cantilever beam AB with a solid circular cross section 
supports a load P at the free end (Fig. 5-26). The diameter dB at the 
large end is twice the diameter dA at the small end:

	
d
d

B

A

25 	

Determine the bending stress B  at the fixed support and the 
maximum bending stress max .

Solution:
Use a four-step problem-solving approach. Combine steps as 
needed for an efficient solution.

Example 5-9

dA

dB

P

x

A

B

L

Figure 5-26
Example 5-9: Tapered cantilever beam  
of circular cross section

1, 2.  �Conceptualize, Categorize: If the angle of taper of the beam is small, the 
bending stresses obtained from the flexure formula differ only slightly from 
the exact values. As a guideline concerning accuracy, note that if the angle 
between line AB (Fig. 5-26) and the longitudinal axis of the beam is about 
208, the error in calculating the normal stresses from the flexure formula 
is about 10%. Of course, as the angle of taper decreases, the error becomes 
smaller.

	3.	 Analyze:

Section modulus: The section modulus at any cross section of the beam can 
be expressed as a function of the distance x measured along the axis of the 
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beam. Since the section modulus depends upon the diameter, first express 
the diameter in terms of x, as

	 d d d d
x
Lx A B A( )5 1 2 	 (5-31)

in which dx  is the diameter at distance x from the free end. Therefore, the 
section modulus at distance x from the end [Eq. (5-20b)] is

	 S
d

d d d
x
Lx

x
A B A





32 32

( )
3 3p p

5 5 1 2 	 (5-32)

Bending stresses: Since the bending moment equals Px, the maximum 
normal stress at any cross section is given by

	
M

S
Px

d d d x L
x

x A B A

32

[ ( )( / )]1 3
p

5 5
1 2

	 (5-33)

The stress 1  is tensile at the top of the beam and compressive at the bottom.
Note that Eqs. (5-31), (5-32), and (5-33) are valid for any values of dA and dB,  

provided the angle of taper is small. In the following, consider only the case 
where d dB A25 .

Maximum stress at the fixed support: The maximum stress at the section of 
largest bending moment (end B of the beam) is obtained using Eq. (5-33) and 
substituting x L5  and d dB A25 ; the result is

	
PL

dB
A

4
3

p
5 	 (a)

Maximum stress in the beam: The maximum stress at a cross section at 
distance x from the end [Eq. (5-33)] assuming that d dB A25  is

	
Px

d x LA

32

(1 / )1 3 3
p

5
1

	 (b)

To determine the location of the cross section having the largest bending 
stress in the beam, find the value of x that makes 1  a maximum. Take the 
derivative d dx/1  and equate it to zero, then solve for the value of x that 
makes 1  a maximum; the result is

	 x
L
2

5 	 (c)

The corresponding maximum stress, obtained by substituting x L/25  into  
Eq. (b), is

	
PL

d

PL

dA A

128

27

4.741
max 3 3

p p
5 5 	  (d) 
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	4.	 Finalize: In this particular example, the maximum stress occurs at the mid-
point of the beam and is 19% greater than the stress B  at the built-in end.

Note: If the taper of the beam is reduced, the cross section of maximum 
normal stress moves from the midpoint toward the fixed support. For small 
angles of taper, the maximum stress occurs at end B.

A cantilever beam AB of length L is being designed to support a 
concentrated load P at the free end (Fig. 5-27). The cross sections 
of the beam are rectangular with a constant width b and varying 
height h. To assist in designing this beam, the designers want to know 
how the height of an idealized beam should vary in order that the 
maximum normal stress at every cross section will be equal to the 
allowable stress allow .

Considering only the bending stresses obtained from the flex-
ure formula, determine the height of the fully stressed beam.

Example 5-10

hBhx

x

A

P B

b
L

Figure 5-27
Example 5-10: Fully stressed beam 
having constant maximum normal stress 
(theoretical shape with shear stresses 
disregarded)

Solution:
Use a four-step problem-solving approach. Combine steps as 
needed for an efficient solution.

1, 2.  �Conceptualize, Categorize: The bending moment and section modulus at 
distance x from the free end of the beam are

	 M Px S
bhx

6

2

5 5 	

where hx is the height of the beam at distance x. Substitute in the flexure 
formula to obtain

	
M
S

Px

bh

Px

bhx x/6

6
allow 2 2 5 5 5 	 (a)

3.	 Analyze: Solve for the height of the beam to find

	 h
Px

bx
6

allow
5 	  (b) 

At the fixed end of the beam x L( )5 , the height hB  is

	
6

allow
5h

PL
bB 	 (c)
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therefore, the height hx is expressed as

	 h h
x
Lx B5 	  (d)

	4.	 Finalize: This last equation shows that the height of the fully stressed beam 
varies with the square root of x. Consequently, the idealized beam has the 
parabolic shape shown in Fig. 5-27.

Note: At the loaded end of the beam x( 0)5 , the theoretical height is zero 
because there is no bending moment at that point. A beam of this shape is not 
practical because it is incapable of supporting the shear forces near the end of the 
beam. Nevertheless, the idealized shape can provide a useful starting point for a 
realistic design in which shear stresses and other effects are considered.

5.8	 Shear Stresses in Beams  
of Rectangular Cross Section
When a beam is in pure bending, the only stress resultants are the bending moments 
and the only stresses are the normal stresses acting on the cross sections. How-
ever, most beams are subjected to loads that produce both bending moments and 
shear forces (nonuniform bending). In these cases, both normal and shear stresses 
are developed in the beam. The normal stresses are calculated from the flexure 
formula (see Section 5.5), provided the beam is constructed of a linearly elastic 
material. The shear stresses are discussed in this and the following two sections.

Vertical and Horizontal Shear Stresses
Consider a beam of rectangular cross section (width b and height h) subjected 
to a positive shear force V (Fig. 5-28a). It is reasonable to assume that the shear 
stresses  acting on the cross section are parallel to the shear force, that is, parallel 
to the vertical sides of the cross section. It is also reasonable to assume that the 
shear stresses are uniformly distributed across the width of the beam, although 
they may vary over the height. Using these two assumptions, you can determine 
the intensity of the shear stress at any point on the cross section.

For purposes of analysis, isolate a small element mn of the beam (Fig. 5-28a) 
by cutting between two adjacent cross sections and between two horizontal 
planes. Assume the shear stresses  acting on the front face of this element are 
vertical and uniformly distributed from one side of the beam to the other. Also, 
from the discussion of shear stresses in Section 1.8, shear stresses acting on 
one side of an element are accompanied by shear stresses of equal magnitude 
acting on perpendicular faces of the element (Figs. 5-28b and c). Thus, there are 
horizontal shear stresses acting between horizontal layers of the beam as well 
as vertical shear stresses acting on the cross sections. At any point in the beam, 
these complementary shear stresses are equal in magnitude.

The equality of the horizontal and vertical shear stresses acting on an ele-
ment leads to an important conclusion regarding the shear stresses at the top 
and bottom of the beam. If you imagine that the element mn (Fig. 5-28a) is 
located at either the top or the bottom, it follows that the horizontal shear 
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stresses must vanish, because there are no stresses on the outer surfaces of 
the beam. It follows that the vertical shear stresses must also vanish at those 
locations; in other words, 0 5  where y h/25 6 .

The existence of horizontal shear stresses in a beam can be demonstrated 
by a simple experiment. Place two identical rectangular beams on simple sup-
ports and load them by a force P, as shown in Fig. 5-29a. If friction between 
the beams is small, the beams bend independently (Fig. 5-29b). Each beam is 
in compression above its own neutral axis and in tension below its neutral axis; 
therefore, the bottom surface of the upper beam slides with respect to the top 
surface of the lower beam.

Now suppose that the two beams are glued along the contact surface, so 
they become a single solid beam. When this beam is loaded, horizontal shear 
stresses must develop along the glued surface in order to prevent the sliding 
shown in Fig. 5-29b. Because of the presence of these shear stresses, the single 
solid beam is much stiffer and stronger than the two separate beams.

Derivation of Shear Formula
Now derive a formula for the shear stresses  in a rectangular beam. However, 
instead of evaluating the vertical shear stresses acting on a cross section, it is easier to 
evaluate the horizontal shear stresses acting between layers of the beam. Of course, 
the vertical shear stresses have the same magnitudes as the horizontal shear stresses.

Now consider a beam in nonuniform bending (Fig. 5-30a). Take two adjacent 
cross sections mn and m n1 1 at a distance dx apart, and consider the element mm n n1 1 .  
The bending moment and shear force acting on the left-hand face of this element 
are denoted M and V, respectively. Since both the bending moment and shear 
force may change when moving along the axis of the beam, the corresponding 
quantities on the right-hand face (Fig. 5-30a) are denoted M dM1  and V dV1 .

Because of the presence of the bending moments and shear forces, the ele-
ment shown in Fig. 5-30a is subjected to normal and shear stresses on both 
cross-sectional faces. However, only the normal stresses are needed in the fol-
lowing derivation, so only the normal stresses are shown in Fig. 5-30b. On cross 
sections mn and m n1 1, the normal stresses are, respectively,

 	
My
I

M dM y
I

and
( )

1 2 5 2 5 2
1

	 (5-34a,b)

as given by the flexure formula [Eq. (5-14)]. In these expressions, y is the distance 
from the neutral axis and I is the moment of inertia of the cross-sectional area 
about the neutral axis.

Next, isolate a subelement mm p p1 1  by passing a horizontal plane pp1 through 
element mm n n1 1  (Fig. 5-30b). The plane pp1 is at distance y1 from the neutral sur-
face of the beam. The subelement is shown separately in Fig. 5-30c. Note that 
its top face is part of the upper surface of the beam and thus is free from stress. 
Its bottom face (which is parallel to the neutral surface and distance y1 from it) 
is acted upon by the horizontal shear stresses  existing at this level in the beam. 
Its cross-sectional faces mp and m p1 1 are acted upon by the bending stresses 

1  and 2 , respectively, which are produced by the bending moments. Vertical 
shear stresses also act on the cross-sectional faces; however, these stresses do 
not affect the equilibrium of the subelement in the horizontal direction (the  
x direction), so they are not shown in Fig. 5-30c.

If the bending moments at cross sections mn and m n1 1 (Fig. 5-30b) are equal 
(that is, if the beam is in pure bending), the normal stresses 1  and 2  acting 

P

P

(a)

(b)

Figure 5-29
Bending of two separate beams

Figure 5-28
Shear stresses in a beam of 
rectangular cross section

y

xz

(a)

(b) (c)
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V
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over the sides mp and m p1 1 of the subelement (Fig. 5-30c) also are equal. Under 
these conditions, the subelement is in equilibrium under the action of the nor-
mal stresses alone; therefore, the shear stresses  acting on the bottom face pp1 
vanish. This conclusion is obvious inasmuch as a beam in pure bending has no 
shear force and hence no shear stresses.

If the bending moments vary along the x axis (nonuniform bending), the 
shear stress  acting on the bottom face of the subelement (Fig. 5-30c) can be 
determined by considering the equilibrium of the subelement in the x direction.

Begin by identifying an element of area dA in the cross section at a distance y 
from the neutral axis (Fig. 5-30d). The force acting on this element is dA, in which 
 is the normal stress obtained from the flexure formula. If the element of area is 
located on the left-hand face mp of the subelement (where the bending moment 
is M), the normal stress is given by Eq. (5-34a); therefore, the element of force is

	 dA
My
I

dA1 5 	

Note that only absolute values are used in this equation because the directions 
of the stresses are obvious from Fig. 5-30. Summing these elements of force over 
the area of face mp of the subelement (Fig. 5-30c) gives the total horizontal force 
F1 acting on that face:

	 ∫ ∫F dA
My
I

dA1 15 5 	 (5-35a)

Note that this integration is performed over the area of the shaded part of the 
cross section shown in Fig. 5-30d, that is, over the area of the cross section from 
y y15  to y h/25 .

The force F1 is shown in Fig. 5-31 on a partial free-body diagram of the 
subelement. (Vertical forces have been omitted.)

Side view of beam Side view of element

Side view of subelement Cross section of beam at subelement

(a) (b)

(c) (d)

dx

dx

p1 y1
p

σ2

y1

y1

y

x

dA

M

m m1

m m1

n n1

m m1

n n1

V MM + dM M + dM

V + dV

dx

x

z

y

O

p p1

σ1

σ1 σ2

x

τ

b

h
2
— h

2
—

h
2
—

h
2
—

h
2
—

Figure 5-30
Shear stresses in a beam  

of rectangular cross section
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In a similar manner, the total force F2 acting on the right-hand face 
m p1 1 of the subelement (Fig. 5-31 and Fig. 5-30c) is

	 ∫ ∫F dA
M dM y

I
dA

( )
2 25 5

1
	 (5-35b)

Knowing the forces F1 and F2, now determine the horizontal force F3 
acting on the bottom face of the subelement.

Since the subelement is in equilibrium, sum forces in the x direction 
and obtain

	 F F F3 2 15 2 	 (5-35c)

or

	 ∫ ∫ ∫F
M dM y

I
dA

My
I

dA
dM y

I
dA

( ) ( )
3 5

1
2 5 	

The quantities dM and I in the last term can be moved outside the integral sign 
because they are constants at any given cross section and are not involved in the 
integration. Thus, the expression for the force F3 becomes

	 ∫F
dM

I
ydA3 5 	 (5-36)

If  the shear stresses t are uniformly distributed across the width b of  the beam, 
the force F3 is also equal to

	 F bdx3 5 	 (5-37)

in which bdx is the area of the bottom face of the subelement.
Combine Eqs. (5-36) and (5-37) and solve for the shear stress t to get

	 ∫





dM
dx Ib

ydA
1

 5 	 (5-38)

The quantity dM/dx is equal to the shear force V (see Eq. 4-4), so the preceding 
expression becomes

	 ∫V
lb

ydA 5 	 (5-39)

The integral in this equation is evaluated over the shaded part of the cross section 
(Fig. 5-30d), as already explained. Thus, the integral is the first moment of the 
shaded area with respect to the neutral axis (the z axis). In other words, the inte-
gral is the first moment of the cross-sectional area above the level at which the shear 
stress t is being evaluated. This first moment is usually denoted by the symbol Q:

	 ∫Q ydA5 	 (5-40)

With this notation, the equation for the shear stress becomes

	
VQ
Ib

 5 	 (5-41)

This equation, known as the shear formula, can be used to determine the shear 
stress t at any point in the cross section of a rectangular beam. Note that for a 

F1

F3

F2

y1

m1m

x

dx

p1p h
2
—

Figure 5-31
Partial free-body diagram of subelement 
showing all horizontal forces (compare  
with Fig. 5-30c)
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specific cross section, the shear force V, moment of inertia I, and width b are 
constants. However, the first moment Q (and hence the shear stress t) varies with 
the distance y1 from the neutral axis.

Calculation of the First Moment Q
If  the level at which the shear stress is to be determined is above the neutral axis, 
as shown in Fig. 5-30d, it is natural to obtain Q by calculating the first moment 
of the cross-sectional area above that level (the shaded area in the figure). How-
ever, as an alternative, you could calculate the first moment of the remaining 
cross-sectional area, that is, the area below the shaded area. Its first moment is 
equal to the negative of Q.

The explanation lies in the fact that the first moment of the entire cross-
sectional area with respect to the neutral axis is equal to zero (because the 
neutral axis passes through the centroid). Therefore, the value of Q for the area 
below the level y1 is the negative of Q for the area above that level. Use the area 
above the level y1 when the point where the shear stress is computed is in the 
upper part of the beam, and use the area below the level y1 when the point is 
in the lower part of the beam.

Furthermore, don’t bother with sign conventions for V and Q. Instead, treat 
all terms in the shear formula as positive quantities and determine the direction 
of the shear stresses by inspection, since the stresses act in the same direction 
as the shear force V itself. This procedure for determining shear stresses is 
illustrated in Example 5-11.

Distribution of Shear Stresses in a Rectangular Beam
Now find the distribution of the shear stresses in a beam of rectangular cross section 
(Fig. 5-32). Obtain the first moment Q of the shaded part of the cross-sectional area 
by multiplying the area by the distance from its own centroid to the neutral axis:

	 Q b
h

y y
h y b h

y















2

/2
2 2 41 1

1
2

1
25 2 1

2
5 2 	 (5-42a)

This same result can be obtained by integration using Eq. (5-40):

	 5 5 5 2Q ydA ybdy
b h

y
h

2 40

/2 2

1
2∫ ∫ 





	 (5-42b)

Substitute the expression for Q into the shear formula [Eq. (5-41)] to get

	
2 4

2

1
2V

I
h

y 5 2








 	 (5-43)

This equation shows that the shear stresses in a rectangular beam vary quadrat-
ically with the distance y1 from the neutral axis. Thus, when plotted along the 
height of the beam, t varies as shown in Fig. 5-32b. Note that the shear stress is 
zero when y h/21 5 6 .

The maximum value of the shear stress occurs at the neutral axis y( 0)1 5  
where the first moment Q has its maximum value. Substitute y 01 5  into 
Eq. (5-43) to get

	
Vh

I
V
A8

3
2max

2

 5 5 	 (5-44)
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Figure 5-32
Distribution of shear stresses 
in a beam of rectangular cross 
section: (a) cross section of beam 
and (b) diagram showing the 
parabolic distribution of shear 
stresses over the height of the 
beam
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in which A bh5  is the cross-sectional area. Thus, the maximum shear stress in a 
beam of rectangular cross section is 50% larger than the average shear stress V/A.

Note again that the preceding equations for the shear stresses can be used 
to calculate either the vertical shear stresses acting on the cross sections or the 
horizontal shear stresses acting between horizontal layers of the beam.5

Limitations
The formulas for shear stresses in this section are subject to the same restrictions 
as the flexure formula from which they are derived. Thus, they are valid only for 
beams of linearly elastic materials with small deflections.

In the case of rectangular beams, the accuracy of the shear formula depends 
upon the height-to-width ratio of the cross section. The formula may be con-
sidered as exact for very narrow beams (height h much larger than the width b).  
However, it becomes less accurate as b increases relative to h. For instance, 
when the beam is square b h( )5 , the true maximum shear stress is about 13% 
larger than the value given by Eq. (5-44). (For a more complete discussion of 
the limitations of the shear formula, see Ref. 5-9.)

A common error is to apply the shear formula [(Eq. (5-41)] to cross-
sectional shapes for which it is not applicable. For instance, it is not appli-
cable to sections of triangular or semicircular shapes. To avoid misusing the 
formula, keep in mind the following assumptions that underlie the derivation: 
(1) The edges of the cross section must be parallel to the y axis (so that the 
shear stresses act parallel to the y axis), and (2) the shear stresses must be 
uniform across the width of the cross section. These assumptions are fulfilled 
only in certain cases, such as those discussed in this and the next two sections.

Finally, the shear formula applies only to prismatic beams. If a beam is non-
prismatic (for instance, if the beam is tapered), the shear stresses are quite dif-
ferent from those predicted by the formulas given here (see Refs. 5-9 and 5-10).

Effects of Shear Strains
Because the shear stress t varies parabolically over the height of  a rectangu-
lar beam, it follows that the shear strain G/ 5  also varies parabolically. As 
a result of  these shear strains, cross sections of the beam that were originally 
plane surfaces become warped. This warping is shown in Fig. 5-33, where cross 
sections mn and pq, originally plane, have become curved surfaces m n1 1 and p q1 1,  
with the maximum shear strain occurring at the neutral surface. At points m1, p1, 
n1, and q1, the shear strain is zero, and therefore the curves m n1 1 and p q1 1 
are perpendicular to the upper and lower surfaces of the beam.

If the shear force V is constant along the axis of the beam, warping 
is the same at every cross section. Therefore, stretching and shortening 
of longitudinal elements due to the bending moments is unaffected by 
the shear strains, and the distribution of the normal stresses is the same 
as in pure bending. Moreover, detailed investigations using advanced 
methods of analysis show that the warping of cross sections due to shear 
strains does not substantially affect the longitudinal strains even when 
the shear force varies continuously along the length. Thus, under most 
conditions, it is justifiable to use the flexure formula [Eq. (5-14)] for non-
uniform bending, even though the formula was derived for pure bending.

5The shear-stress analysis presented in this section was developed by the Russian 
engineer D. J. Jourawski; see Refs. 5-7 and 5-8.
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p
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q

n

Figure 5-33
Warping of the cross sections  
of a beam due to shear strains
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A metal beam with a span  L 3 ft5  is simply supported at points A 
and B (Fig. 5-34a). The uniform load on the beam (including its own 
weight) is q 160 lb/in.5  The cross section of the beam is rectangular 
(Fig. 5-34b) with width b 1 in.5  and height h 4 in.5  The beam is 
adequately supported against sideways buckling.

Determine the normal stress C  and shear stress C  at point C, 
which is located 1 in. below the top of the beam and 8 in. from the 
right-hand support. Show these stresses on a sketch of a stress ele-
ment at point C.

Solution:
Use a four-step problem-solving approach. Combine steps as needed 
for an efficient solution.
1, 2.  �Conceptualize, Categorize:

Shear force and bending moment: The shear force VC  and bend-
ing moment MC at the cross section through point C are found 
as described in Chapter 4. The results are

	 M VC C17,920 lb-in. 1600 lb5 5 2 	

The signs of these quantities are based upon the standard 
sign conventions for bending moments and shear forces (see 
Fig. 4-19).

Moment of inertia: The moment of inertia of the cross-sectional 
area about the neutral axis (the z axis in Fig. 5-34b) is

	 I
bh
12

1
12

(1.0 in.)(4.0 in.) 5.333 in
3

3 45 5 5 	

3.   �Analyze:
Normal stress at point C: The normal stress at point C is 
found from the flexure formula [Eq. (5-14)] with the distance y  
from the neutral axis equal to 1.0 in.; thus,

	
My
IC

(17,920 lb-in.)(1.0 in.)

5.333 in
3360 psi4 5 2 5 2 5 2 	

The minus sign indicates that the stress is compressive, as 
expected.

Shear stress at point C: To obtain the shear stress at point C, 
evaluate the first moment QC  of the cross-sectional area above 
point C (Fig. 5-34b). This first moment is equal to the product 
of the area and its centroidal distance (denoted yC) from the  
z axis; thus,

(1.0 in.)(1.0 in.) 1.0 in 1.5 in. 1.5 in2 3A y Q A yC C C C C5 5 5 5 5

Example 5-11

8 in.

BA

L = 3 ft

q = 160 lb/in.

(a)

(b)

(c)

z

C= 2.0 in.

b = 1.0 in.

3 in.4 in.

= 2.0 in.

y = 1.0 in.

y

1.0 in.

450 psi

3360 psi

450 psi

3360 psi
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C

O

h
2
—

h
2
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Figure 5-34
Example 5-11: (a) Simple beam with 
uniform load, (b) cross section of beam, 
and (c) stress element showing the normal 
and shear stresses at point C
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Now substitute numerical values into the shear formula [Eq. (5-41)] and obtain 
the magnitude of the shear stress:

	
V Q

IbC
C C (1600 lb)(1.5 in )

(5.333 in )(1.0 in.)
450 psi

3

4 5 5 5 	

	4.	 Finalize: The direction of this stress can be established by inspection because 
it acts in the same direction as the shear force. In this example, the shear force 
acts upward on the part of the beam to the left of point C and downward on the 
part of the beam to the right of point C. The best way to show the directions of 
both the normal and shear stresses is to draw a stress element.

Stress element at point C: The stress element, shown in Fig. 5-34c, is cut from the 
side of the beam at point C (Fig. 5-34a). Compressive stresses C 3360 psi 5  act 
on the cross-sectional faces of the element and shear stresses C 450 psi 5  act 
on the top and bottom faces as well as the cross-sectional faces.

A wood beam AB supporting two concentrated loads P (Fig. 5-35a) has 
a rectangular cross section of width b 100 mm5  and height h 150 mm5  
(Fig. 5-35b). The distance from each end of the beam to the nearest load 
is a 0.5 m5 .

Determine the maximum permissible value Pmax of the loads if the 
allowable stress in bending is 11 MPaallow 5  (for both tension and com-
pression) and the allowable stress in horizontal shear is 1.2 MPaallow 5 .  
(Disregard the weight of the beam itself.)

Note: Wood beams are much weaker in horizontal shear (shear parallel 
to the longitudinal fibers in the wood) than in cross-grain shear (shear on 
the cross sections). Consequently, the allowable stress in horizontal shear 
is usually considered in design.

Solution:
Use a four-step problem-solving approach.
1.  �Conceptualize: The maximum shear force occurs at the supports, 

and the maximum bending moment occurs throughout the region 
between the loads. Their values are

	 max maxV P M Pa5 5 	

Also, the section modulus S and cross-sectional area A are

	 S
bh

A bh
6

2

5 5 	

Example 5-12
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Figure 5-35
Example 5-12: Wood beam with 
concentrated loads
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	2.	 Categorize: The maximum normal and shear stresses in the beam are obtained 
from the flexure and shear formulas [Eqs. (5-17) and (5-44)]:

	   
M

S
Pa

bh

V

A
P
bh

6 3

2
3
2max

max
2 max

max 5 5 5 5 	

Therefore, the maximum permissible values of the load P in bending and 
shear, respectively, are

	 P
bh

a
P

bh

6

2

3bending
allow

2

shear
allow 

5 5 	

	3.	 Analyze: Substitute numerical values into these formulas to get 

   	
P

P

(11 MPa)(100 mm)(150 mm)
6(0.5 m)

8.25 kN

2(1.2 MPa)(100 mm)(150 mm)
3

12.0 kN

bending

2

shear

5 5

5 5

Thus, the bending stress governs the design, and the maximum permissible 
load is

	 P 8.25 kNmax 5 	

	4.	 Finalize: A more complete analysis of this beam would require that the weight 
of the beam be taken into account, thus reducing the permissible load.

Notes:
i.	 In this example, the maximum normal stresses and maximum shear 

stresses do not occur at the same locations in the beam—the normal stress 
is maximum in the middle region of the beam at the top and bottom of the 
cross section, and the shear stress is maximum near the supports at the neu-
tral axis of the cross section.

ii.	 For most beams, the bending stresses (not the shear stresses) control the 
allowable load, as in this example.

iii.	 Although wood is not a homogeneous material and often departs from 
linearly elastic behavior, approximate results still can be obtained from 
the flexure and shear formulas. These approximate results are usually 
adequate for designing wood beams.

5.9	 Shear Stresses in Beams  
of Circular Cross Section
When a beam has a circular cross section (Fig. 5-36), you can no longer assume 
that the shear stresses act parallel to the y axis. For instance, it is easy to prove 
that at point m (on the boundary of  the cross section) the shear stress t must 
act tangent to the boundary. This observation follows from the fact that the 
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outer surface of  the beam is free of  stress, and the shear stress acting on the 
cross section can have no component in the radial direction.

Although there is no simple way to find the shear stresses acting throughout 
the entire cross section, the shear stresses at the neutral axis (where the stresses 
are the largest) are found by making some reasonable assumptions about the 
stress distribution. Assume that the stresses act parallel to the y axis and have 
a constant intensity across the width of the beam (from point p to point q in 
Fig. 5-36). Since these assumptions are the same as those used in deriving the 
shear formula VQ Ib/ 5  [Eq. (5-41)], use the shear formula to calculate the 
stresses at the neutral axis.

For use in the shear formula, the following properties pertaining to a 
circular cross section having radius r are needed:

	 I
r

Q Ay
r r r

b r










4 2

4
3

2
3

2
4 2 3p p

p
5 5 5 5 5 	 (5-45a,b)

The expression for the moment of inertia I is taken from Case 9 of Appendix E,  
and the expression for the first moment Q is based upon the formulas for a 
semicircle (Case 10, Appendix E). Substitute these expressions into the shear 
formula to obtain

	
VQ
Ib

V r

r r

V

r

V
Aπ

(2 /3)

( /4)(2 )

4

3

4
3max

3

4 2
p

5 5 5 5 	 (5-46)

in which A r2p5  is the area of the cross section. This equation shows that the 
maximum shear stress in a circular beam is equal to 4/3 times the average vertical 
shear stress V/A.

For a beam with a hollow circular cross section (Fig. 5-37), again assume 
with reasonable accuracy that the shear stresses at the neutral axis are parallel 
to the y axis and uniformly distributed across the section. Consequently, the 
shear formula is used to find the maximum stresses. The required properties 
for a hollow circular section are

	 I r r Q r r b r r
4

( )
2
3

( ) 2( )2
4

1
4

2
3

1
3

2 1
p

5 2 5 2 5 2 	 (5-47a,b,c)

in which r1 and r2 are the inner and outer radii of the cross section. Therefore, 
the maximum stress is

	
VQ
Ib

V
A

r r r r

r r







4
3max

2
2

2 1 1
2

2
2

1
2 5 5

1 1

1
	 (5-48)

in which

	 A r r( )2
2

1
2p5 2 	

is the area of  the cross section. Note that if  r 01 5 , Eq. (5-48) reduces to 
Eq. (5-46) for a solid circular beam.

Although the preceding theory for shear stresses in beams of circular cross 
section is approximate, it gives results differing by only a few percent from 
those obtained using the exact theory of elasticity (Ref. 5-9). Consequently, 
Eqs. (5-46) and (5-48) can be used to determine the maximum shear stresses in 
circular beams under ordinary circumstances.

q
O

z
p

y

 τmax

r
m

τ

Figure 5-36
Shear stresses acting on the cross 
section of a circular beam

O
z

y

r1
r2

Figure 5-37
Hollow circular cross section
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A vertical pole consisting of a circular tube of outer diameter d 4.0 in.2 5  and inner 
diameter d 3.2 in.1 5  is loaded by a horizontal force P 1500 lb5  (Fig. 5-38a).

(a)	 Determine the maximum shear stress in the pole.

(b)	For the same load P and the same maximum shear stress, what is the diameter 
d0 of a solid circular pole (Fig. 5-38b)?

Example 5-13

(a) (b)

d1

d2 d0

P P

Figure 5-38
Example 5-13: Shear stresses  
in beams of circular cross  
section

Solution:
Use a four-step problem-solving approach. Combine steps as needed for an efficient 
solution.

Part (a): Maximun shear stress.

1, 2.  �Conceptualize, Categorize: For the pole having a hollow circular cross section 
(Fig. 5-38a), use Eq. (5-48) with the shear force V replaced by the load P  
and the cross-sectional area A replaced by the expression r r( )2

2
1
2p 2 ; thus,

  	
P r r r r

r r







4
3max

2
2

2 1 1
2

2
4

1
4

p
5

1 1

2
	 (a)

3, 4.  �Analyze, Finalize: Next, substitute numerical values, namely,

	 P r d r d1500 lb /2 2.0 in. /2 1.6 in.2 2 1 15 5 5 5 5 	

to obtain

	 658 psimax 5 	

which is the maximum shear stress in the pole.
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Part (b): Diameter of solid circular pole.

1, 2.  �Conceptualize, Categorize: For the pole having a solid circular cross 
section (Fig. 5-36b), use Eq. (5-46) with V replaced by P and r replaced  
by d /20 :

	
P

d

4

3 ( /2)max
0

2
p

5 	 (b)

	3.	 Analyze: Solve for d0 to obtain

	 d
P16

3
16(1500 lb)
3 (658 psi)

3.87 in0
2

max

2

p p
5 5 5 	

that produces

	 d 1.97 in.0 5 	

	4.	 Finalize: In this particular example, the solid circular pole has a diameter 
approximately one-half that of the tubular pole.

Note: Shear stresses rarely govern the design of either circular or rectan-
gular beams made of metals such as steel and aluminum. In these kinds of 
materials, the allowable shear stress is usually in the range 25 to 50% of the 
allowable tensile stress. In the case of the tubular pole in this example, the 
maximum shear stress is only 658 psi. In contrast, the maximum bending 
stress obtained from the flexure formula is 9700 psi for a relatively short pole 
of length 24 in. Thus, as the load increases, the allowable tensile stress will 
be reached long before the allowable shear stress is reached.

The situation is quite different for materials that are weak in shear, such 
as wood. For a typical wood beam, the allowable stress in horizontal shear 
is in the range of 4 to 10% of the allowable bending stress. Consequently, 
even though the maximum shear stress is relatively low in value, it sometimes 
governs the design.

5.10	Shear Stresses in the Webs of Beams  
with Flanges
When a beam of wide-flange shape (Fig. 5-39a) is subjected to shear forces as 
well as bending moments (nonuniform bending), both normal and shear stresses 
are developed on the cross sections. The distribution of the shear stresses in a 
wide-flange beam is more complicated than in a rectangular beam. For instance, 
the shear stresses in the flanges of the beam act in both vertical and horizontal 
directions (the y and z directions), as shown by the small arrows in Fig. 5-39b. 
The horizontal shear stresses are much larger than the vertical shear stresses in 
the flanges and are discussed later in Section 6.8.
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The shear stresses in the web of a wide-flange beam act only in the vertical 
direction and are larger than the stresses in the flanges. These stresses can be 
found by the same techniques used for finding shear stresses in rectangular 
beams.

Shear Stresses in the Web
Begin the analysis by determining the shear stresses at line ef in the web of a 
wide-flange beam (Fig. 5-40a). Make the same assumptions as those made for a 
rectangular beam; that is, assume that the shear stresses act parallel to the y axis 
and are uniformly distributed across the thickness of the web. Then the shear 
formula VQ Ib/ 5  will still apply. However, the width b is now the thickness t  
of  the web, and the area used in calculating the first moment Q is the area 
between line ef and the top edge of the cross section (indicated by the shaded 
area of Fig. 5-40a).

When finding the first moment Q of the shaded area, disregard the effects 
of the small fillets at the juncture of the web and flange (points b and c in 
Fig. 5-40a). The error in ignoring the areas of these fillets is very small. Then 
divide the shaded area into two rectangles. The first rectangle is the upper 
flange itself, which has the area

	 A b
h h



2 21

15 2 	 (5-49a)

in which b is the width of  the flange, h is the overall height of  the beam, and 
h1 is the distance between the insides of  the flanges. The second rectangle is 
the part of  the web between ef and the flange, that is, rectangle efcb, which has 
the area

	 A t
h

y



22

1
15 2 	 (5-49b)

in which t is the thickness of the web and y1 is the distance from the neutral axis 
to line ef.

The first moments of areas A1 and A2, evaluated about the neutral axis, 
are obtained by multiplying these areas by the distances from their respective 

(b)

y

(a)

z
x

Figure 5-39
(a) Beam of wide-flange shape  
and (b) directions of the shear  
stresses acting on a cross section

Figure 5-40
Shear stresses in the web of  
a wide-flange beam:  
(a) cross section of beam  
and (b) distribution of vertical  
shear stresses in the web
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centroids to the z axis. Adding these first moments gives the first moment Q 
of the combined area:

	 Q A
h h h

A y
h y









2

/2 /2
2

/2
21

1 1
2 1

1 15 1
2

1 1
2

	

Substituting for A1 and A2 from Eqs. (5-49a and b) and then simplifying gives

	 Q
b

h h
t

h y
8

( )
8

( 4 )2
1
2

1
2

1
25 2 1 2 	 (5-50)

Therefore, the shear stress t in the web of  the beam at distance y1 from the 
neutral axis is

	
VQ
It

V
It

b h h t h y 8
( ) ( 4 )2

1
2

1
2

1
2 5 5 2 1 2 	 (5-51)

in which the moment of inertia of the cross section is

	 I
bh b t h

bh bh th
12

( )
12

1
12

( )
3

1
3

3
1
3

1
35 2

2
5 2 1 	 (5-52)

Since all quantities in Eq. (5-51) are constants except y1, note that t varies qua-
dratically throughout the height of the web, as shown by the graph in Fig. 5-40b. 
The graph is drawn only for the web and does not include the flanges. The reason 
is simple enough—Eq. (5-51) cannot be used to determine the vertical shear 
stresses in the flanges of the beam (see the discussion titled “Limitations” later 
in this section).

Maximum and Minimum Shear Stresses
The maximum shear stress in the web of a wide-flange beam occurs at the neutral 
axis where y 01 5 . The minimum shear stress occurs where the web meets the 
flanges y h( /2)1 15 6 . These stresses, found from Eq. (5-51), are

	
V
It

bh bh th
Vb

It
h h

8
( )

8
( )max

2
1
2

1
2

min
2

1
2 5 2 1 5 2 	 (5-53a,b)

Both max  and min  are labeled on the graph of  Fig. 5-40b. For typical wide-
flange beams, the maximum stress in the web is from 10 to 60% greater than the 
minimum stress.

Although it may not be apparent from the preceding discussion, the stress 

max  given by Eq. (5-53a) not only is the largest shear stress in the web but also 
is the largest shear stress anywhere in the cross section.

Shear Force in the Web
The vertical shear force carried by the web alone may be determined by multi-
plying the area of the shear-stress diagram (Fig. 5-40b) by the thickness t of  the 
web. The shear-stress diagram consists of two parts: a rectangle of area h1 min  
and a parabolic segment of area

	 h
2
3

( )( )1 max min 2 	
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Adding these two areas, multiplying by the thickness t of  the web, and then 
combining terms gives the total shear force in the web:

	 V
th
3

(2 )web
1

max min 5 1 	 (5-54)

For beams of typical proportions, the shear force in the web is 90 to 98% of the 
total shear force V acting on the cross section; the remainder is carried by shear 
in the flanges.

Since the web resists most of the shear force, designers often calculate an 
approximate value of the maximum shear stress by dividing the total shear 
force by the area of the web. The result is the average shear stress in the web, 
assuming that the web carries all of the shear force:

	
V
thaver

1

 5 	 (5-55)

For typical wide-flange beams, the average stress calculated in this manner 
is within 10% (plus or minus) of  the maximum shear stress calculated from 
Eq. (5-53a). Thus, Eq. (5-55) provides a simple way to estimate the maximum 
shear stress.

Limitations
The elementary shear theory presented in this section is suitable for determining 
the vertical shear stresses in the web of  a wide-flange beam. However, when 
investigating vertical shear stresses in the flanges, you can no longer assume that 
the shear stresses are constant across the width of the section, that is, across the 
width b of  the flanges (Fig. 5-40a). Hence, you cannot use the shear formula to 
determine these stresses.

To emphasize this point, consider the junction of the web and upper flange 
y h( /2)1 15 , where the width of the section changes abruptly from t to b. The 

shear stresses on the free surfaces ab and cd (Fig. 5-40a) must be zero, whereas 
the shear stress across the web at line bc is min . These observations indicate 
that the distribution of shear stresses at the junction of the web and the flange 
is quite complex and cannot be investigated by elementary methods. The stress 

Figure 5-40 (Repeated)
Shear stresses in the web 
of a wide-flange beam: 
(a) cross section of beam and 
(b) distribution of vertical shear 
stresses in the web

y

f

O

t

(b)

(a)

a

y1
h

z

e
d

h1
2

h1
2

h1

τmin

τmax

τmin

h1
2

h1
2

cb

b

τ
h
2
—

h
2
—

93347_ch05_hr_445-552.indd   494 10/25/16   5:29 PM



	 Section 5.10  Shear Stresses in the Webs of Beams with Flanges 	 495

analysis is further complicated by the use of fillets at the re-entrant corners 
(corners b and c). The fillets are necessary to prevent the stresses from becom-
ing dangerously large, but they also alter the stress distribution across the web.

Thus, the shear formula cannot be used to determine the vertical shear 
stresses in the flanges. However, the shear formula does give good results for 
the shear stresses acting horizontally in the flanges (Fig. 5-39b), as discussed 
later in Section 6.8.

This method for determining shear stresses in the webs of wide-flange 
beams also can be used for other sections having thin webs. For instance, 
Example 5-15 illustrates the procedure for a T-beam.

Example 5-14 

y

O

(b)

(a)

h =
320 mm
z h1 

= 
290 mm

τmin

τmax

τmin

b =
165 mm

t = 7.5 mm

= 
17.4 MPa

= 
21.0 MPa

Figure 5-41
Example 5-14: Shear  
stresses in the web  
of a wide-flange beam

A beam of wide-flange shape (Fig. 5-41a) is subjected to a vertical shear force 
V 45 kN5 . The cross-sectional dimensions of the beam are b 165 mm5 ,  t 7.5 mm5 ,  
h 320 mm5 , and h 290 mm1 5 .

Determine the maximum shear stress, minimum shear stress, and total shear force 
in the web. (Disregard the areas of the fillets when making calculations.)

Solution:
Use a four-step problem-solving approach. Combine steps as needed for an efficient 
solution.
1, 2.  �Conceptualize, Categorize:

Maximum and minimum shear stresses: The maximum and minimum shear 
stresses in the web of the beam are given by Eqs. (5-53a and b). Before 
substituting into those equations, calculate the moment of inertia of the 
cross-sectional area from Eq. (5-52):

	 I bh bh th
1

12
( ) 130.45 10 mm3

1
3

1
3 6 45 2 1 5 3 	
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	3.	 Analyze: Now substitute this value for I, as well as the numerical values  
for the shear force V and the cross-sectional dimensions, into Eqs. (5-53a 
and b):

	

V
It

bh bh th

Vb
It

h h

8
( ) 21.0 MPa

8
( ) 17.4 MPa

max
2

1
2

1
2

min
2

1
2





5 2 1 5

5 2 5

	

In this case, the ratio of max  to min  is 1.21, that is, the maximum stress in 
the web is 21% larger than the minimum stress. The variation of the shear 
stresses over the height h1 of the web is shown in Fig. 5-41b.

Total shear force: The shear force in the web is calculated from Eq. (5-54) as

	 V
th
3

(2 ) 43.0 kNweb
1

max min 5 1 5 	

	4.	 Finalize: From this result, note that the web of this particular beam resists 
96% of the total shear force.

Note: The average shear stress in the web of the beam [from Eq. (5-55)] is

	
V
th

20.7 MPaaver
1

 5 5 	

which is only 1% less than the maximum stress.

A beam having a T-shaped cross section (Fig. 5-42a) is subjected to a vertical 
shear force V 10,000 lb5 . The cross-sectional dimensions are b 4 in.5 , t 1.0 in.5 , 
h 8.0 in.5 , and h 7.0 in.1 5

Determine the shear stress 1  at the top of the web (level nn) and the maximum 
shear stress max . (Disregard the areas of the fillets.)

Solution:
Use a four-step problem-solving approach. Combine steps as needed for an efficient 
solution.
1, 2.  �Conceptualize, Categorize:

Location of neutral axis: The neutral axis of the T-beam is located by calcu-
lating the distances c1 and c2 from the top and bottom of the beam to the cen-
troid of the cross section (Fig. 5-42a). First, divide the cross section into two 
rectangles: the flange and the web (see the dashed line in Fig. 5-42a). Then 
calculate the first moment Qaa of these two rectangles with respect to line aa 
at the bottom of the beam. The distance c2 is equal to Qaa divided by the area 

Example 5-15
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O

(b)(a)

n n

a a

y

b = 4.0 in.

t = 1.0 in.

z τmax

τ1c1

c2 c2
h1

h1  
= 7.0 in.

h = 8.0 in.

Figure 5-42
Example 5-15: Shear  
stresses in web of T-shaped  
beam

A of the entire cross section (see Appendix D, Section D.2, for methods for 
locating centroids of composite areas). The calculations are

A A b h h thi ( ) 11.0 in1 1
25 S 5 2 1 5

Q y A
h h

b h h
h

th

c
Q

A
c h c

aa i i

aa





2

( )( )
2

( ) 54.5 in

54.5 in

11.0 in
4.955 in. 3.045 in.

1
1

1
1

3

2

3

2 1 2

5 S 5
1

2 1 5

5 5 5 5 2 5

Moment of inertia: Find the moment of inertia I of the entire cross-sectional 
area (with respect to the neutral axis) by determining the moment of inertia Iaa 
about line aa at the bottom of the beam and then use the parallel-axis theorem 
(see Section D.4, Appendix D):

I I Acaa 2
25 2

The calculations are

I
bh b t h

Ac Iaa 3
( )

3
339.67 in 270.02 in 69.65 in

3
1
3

4
2
2 4 45 2

2
5 5 5

	3.	 Analyze:
Shear stress at top of web: To find the shear stress 1  at the top of the web (along 
line nn) calculate the first moment Q1 of the area above level nn. This first 
moment is equal to the area of the flange times the distance from the neutral 
axis to the centroid of the flange:

Q b h h c
h h



( )

2

(4 in.)(1 in.)(3.045 in. 0.5 in.) 10.18 in

1 1 1
1

3

5 2 2
2

5 2 5
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You get the same result if you calculate the first moment of the area below 
level nn:

Q th c
h



2

(1 in.)(7 in.)(4.955 in. 3.5 in.) 10.18 in1 1 2
1 35 2 5 2 5

Substitute into the shear formula to find

	
VQ

It
(10,000 lb)(10.18 in )

(69.65 in )(1 in.)
1460 psi1

1
3

4 5 5 5 �

This stress exists both as a vertical shear stress acting on the cross section and 
as a horizontal shear stress acting on the horizontal plane between the flange 
and the web.

Maximum shear stress: The maximum shear stress occurs in the web at the 
neutral axis. Therefore, calculate the first moment Qmax of the cross-sectional 
area below the neutral axis:

Q tc
c









2

(1 in.)(4.955 in.)
4.955 in.

2
12.28 inmax 2

2 35 5 5

The same result is obtained if the first moment of the area above the neutral 
axis is computed, but those calculations would be slighter longer.

Substitute into the shear formula to obtain

	
VQ

It
(10,000 lb)(12.28 in )

(69.65 in )(1 in.)
1760 psimax

max
3

4 5 5 5 �

which is the maximum shear stress in the beam.

	4.	 Finalize: The parabolic distribution of shear stresses in the web is shown in  
Fig. 5-42b.

*5.11  Built-Up Beams and Shear Flow
Built-up beams are fabricated from two or more pieces of material joined together 
to form a single beam. Such beams can be constructed in a great variety of 
shapes to meet special architectural or structural needs and to provide larger 
cross sections than are ordinarily available.

Figure 5-43 shows some typical cross sections of built-up beams. A wood 
box beam (Fig. 5-43a) is constructed of two planks that serve as flanges and 
two plywood webs. The pieces are joined together with nails, screws, or glue 
in such a manner that the entire beam acts as a single unit. Box beams are also 
constructed of other materials, including steel, plastics, and composites.

The second example (Fig. 5-43b) is a glued laminated beam (called a glulam 
beam) made of boards glued together to form a much larger beam than could 
be cut from a tree as a single member. Glulam beams are widely used in the 
construction of small buildings.
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The third example (Fig. 5-43c) is a steel plate girder of the type commonly 
used in bridges and large buildings. These girders, consisting of three steel 
plates joined by welding, can be fabricated in much larger sizes than are avail-
able with ordinary wide-flange or I-beams.

Built-up beams must be designed so that the beam behaves as a single mem-
ber. Consequently, the design calculations involve two phases. In the first phase, 
the beam is designed as though it were made of one piece, taking into account 
both bending and shear stresses. In the second phase, the connections between 
the parts (such as nails, bolts, welds, and glue) are designed to ensure that the 
beam does indeed behave as a single entity. In particular, the connections must 
be strong enough to transmit the horizontal shear forces acting between the 
parts of the beam. To obtain these forces, make use of the concept of shear flow.

Shear Flow
To obtain a formula for the horizontal shear forces acting between parts of a 
beam, return to the derivation of  the shear formula (see Figs. 5-30 and 5-31 
of  Section 5.8). In that derivation, element mm n n1 1  was cut from a beam 
(Fig. 5-44a) and horizontal equilibrium of a subelement mm p p1 1  was investi-
gated (Fig. 5-44b). From the horizontal equilibrium of the subelement, the force 
F3 (Fig. 5-44c) acting on its lower surface was found to be

	 5F
dM

I
ydA3 ∫ 	 (5-56)

This equation is repeated from Eq. (5-36) of Section 5.8.

(a)

(b) (c)

Figure 5-43
Cross sections of typical built-up 
beams: (a) wood box beam,  
(b) glulam beam, and (c) plate 
girder

Figure 5-44
Horizontal shear stresses  
and shear forces in a beam  
(Note: These figures are repeated  
from Figs. 5-30 and 5-31)
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500	 Chapter 5  Stresses in Beams (Basic Topics)

Now define a new quantity called the shear flow f. Shear flow is the hori-
zontal shear force per unit distance along the longitudinal axis of the beam. Since 
the force F3 acts along the distance dx, the shear force per unit distance is equal 
to F3 divided by dx; thus,

	 f
F

dx
dM
dx I

y dA∫





135 5 	

Replacing dM/dx by the shear force V and denoting the integral by Q leads to 
the shear-flow formula:

	 f
VQ

I
5 	 (5-57)

This equation gives the shear flow acting on the horizontal plane pp1 shown in 
Fig. 5-44a. The terms V, Q, and I have the same meanings as in the shear formula 
[Eq. (5-41)].

If the shear stresses on plane pp1 are uniformly distributed, as assumed for 
rectangular beams and wide-flange beams, the shear flow f equals b . In that 
case, the shear-flow formula reduces to the shear formula. However, the deriva-
tion of Eq. (5-56) for the force F3 does not involve any assumption about the dis-
tribution of shear stresses in the beam. Instead, the force F3 is found solely from 
the horizontal equilibrium of the subelement (Fig. 5-44c). Therefore, the sub-
element and the force F3 can be interpreted in more general terms than before.

The subelement may be any prismatic block of material between cross sec-
tions mn and m n1 1 (Fig. 5-44a). It does not have to be obtained by making a 
single horizontal cut (such as pp1) through the beam. Also, since the force F3 is 
the total horizontal shear force acting between the subelement and the rest of 
the beam, it may be distributed anywhere over the sides of the subelement, not 
just on its lower surface. These same comments apply to the shear flow f, since 
it is merely the force F3 per unit distance.

Now return to the shear-flow formula f VQ I/5  [Eq. (5-57)]. The terms V 
and I have their usual meanings and are not affected by the choice of subele-
ment. However, the first moment Q is a property of the cross-sectional face 
of the subelement. To illustrate how Q is determined, consider three specific 
examples of built-up beams (Fig. 5-45).

Areas Used when Calculating the First Moment Q
The first example of a built-up beam is a welded steel plate girder (Fig. 5-45a). 
The welds must transmit the horizontal shear forces that act between the flanges 
and the web. At the upper flange, the horizontal shear force (per unit distance 
along the axis of the beam) is the shear flow along the contact surface aa. This 
shear flow may be calculated by taking Q as the first moment of  the cross-
sectional area above the contact surface aa. In other words, Q is the first moment 
of the flange area (shown shaded in Fig. 5-45a) calculated with respect to the 
neutral axis. After calculating the shear flow, next determine the amount of 
welding needed to resist the shear force, because the strength of a weld is usually 
specified in terms of force per unit distance along the weld.

The second example is a wide-flange beam that is strengthened by riveting 
a channel section to each flange (Fig. 5-45b). The horizontal shear force acting 
between each channel and the main beam must be transmitted by the rivets. This 
force is calculated from the shear-flow formula using Q as the first moment of the 

Figure 5-45
Areas used when calculating the 
first moment Q
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(b)

(a)

a a

y

z O
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area of the entire channel (shown shaded in the figure). The resulting shear flow 
is the longitudinal force per unit distance acting along the contact surface bb, and 
the rivets must be of adequate size and longitudinal spacing to resist this force.

The last example is a wood box beam with two flanges and two webs that 
are connected by nails or screws (Fig. 5-45c). The total horizontal shear force 
between the upper flange and the webs is the shear flow acting along both 
contact surfaces cc and dd, and therefore the first moment Q is calculated for 
the upper flange (the shaded area). In other words, the shear flow calculated 
from the formula /f VQ I5  is the total shear flow along all contact surfaces 
that surround the area for which Q is computed. In this case, the shear flow f  
is resisted by the combined action of the nails on both sides of the beam, that 
is, at both cc and dd, as illustrated in the following example.

A wood box beam (Fig. 5-46) is constructed of two boards, each 40 × 180 mm in 
cross section, that serve as flanges and two plywood webs, each 15 mm thick. The 
total height of the beam is 280 mm. The plywood is fastened to the flanges by wood 
screws having an allowable load in shear of 800 NF 5  each.

If the shear force V acting on the cross section is 10.5 kN, deter-
mine the maximum permissible longitudinal spacing s of the screws 
(Fig. 5-46b).

Solution:
Use a four-step problem-solving approach. Combine steps as needed 
for an efficient solution.
1, 2.  �Conceptualize, Categorize: 

Shear flow: The horizontal shear force transmitted between 
the upper flange and the two webs can be found from the 
shear-flow formula /f VQ I5 , in which Q is the first moment 
of the cross-sectional area of the flange. To find this first 
moment, multiply the area Af  of the flange by the distance d f  
from its centroid to the neutral axis:

40 mm 180 mm 7200 mm 120 mm

(7200 mm )(120 mm) 864 10 mm

2

2 3 3

A d

Q A d

f f

f f

5 3 5 5

5 5 5 3

The moment of inertia of the entire cross-sectional area about 
the neutral axis is equal to the moment of inertia of the outer 
rectangle minus the moment of inertia of the “hole” (the inner 
rectangle):

I
1

12
(210 mm)(280 mm)

1
12

(180 mm)(200 mm)

264.2 10 mm

3 3

6 4

5 2

5 3

Example 5-16

(a) Cross section

180 mm

280 mm

120 mm

15 mm

20 mm

15 mm

40 mm

40 mm

z

y

O

(b) Side view

s s s

x

Figure 5-46
Example 5-16: Wood box beam
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502	 Chapter 5  Stresses in Beams (Basic Topics)

*5.12  Beams with Axial Loads
Structural members are often subjected to the simultaneous action of  bending 
loads and axial loads. This happens, for instance, in aircraft frames, columns 
in buildings, machinery, parts of  ships, and spacecraft. If  the members are not 
too slender, the combined stresses can be obtained by superposition of  the 
bending stresses and the axial stresses.

To see how this is accomplished, consider the cantilever beam shown in 
Fig. 5-47a. The only load on the beam is an inclined force P acting through 
the centroid of the end cross section. This load can be resolved into two com-
ponents, a lateral load Q and an axial load S. These loads produce stress 
resultants in the form of bending moments M, shear forces V, and axial forces 
N throughout the beam (Fig. 5-47b). On a typical cross section a distance x 
from the support, these stress resultants are

M Q L x V Q N S( )5 2 5 2 5

in which L is the length of  the beam. The stresses associated with each 
of  these stress resultants can be determined at any point in the cross sec-
tion by means of  the appropriate formula ( /My I 5 2 , /VQ Ib 5 ,  
and /N A 5 ).

Since both the axial force N and bending moment M produce normal 
stresses, combine those stresses to obtain the final stress distribution. The 
axial force (when acting alone) produces a uniform stress distribution /N A 5  

Substituting V, Q, and I into the shear-flow formula [Eq. (5-57)] gives

f
VQ

I
(10,500 N)(864 10 mm )

264.2 10 mm
34.3 N/mm

3 3

6 45 5
3

3
5

which is the horizontal shear force per millimeter of length that must be 
transmitted between the flange and the two webs.

	3.	 Analyze: 

Spacing of screws: Since the longitudinal spacing of the screws is s, and 
since there are two lines of screws (one on each side of the f lange), the load 
capacity of the screws is 2F per distance s along the beam. Therefore, the 
capacity of the screws per unit distance along the beam is 2F/s. Equating 
2F/s to the shear f low f and solving for the spacing s gives

	 s
F
f

2 2(800 N)
34.3 N/mm

46.6 mm5 5 5 �

	4.	 Finalize: This value of s is the maximum permissible spacing of the screws 
based upon the allowable load per screw. Any spacing greater than 46.6 mm 
would overload the screws. For convenience in fabrication (and to be on the 
safe side), a spacing such as 45 mms 5  should be selected.

93347_ch05_hr_445-552.indd   502 10/25/16   5:29 PM



	 Section 5.12  Beams with Axial Loads	 503

over the entire cross section, as shown by the stress diagram in Fig. 5-47c. In 
this particular example, the stress s is tensile, as indicated by the plus signs 
attached to the diagram.

The bending moment produces a linearly varying stress /My I 5 2  
(Fig. 5-47d) with compression on the upper part of the beam and tension on the 
lower part. The distance y is measured from the z axis, which passes through 
the centroid of the cross section.

The final distribution of normal stresses is obtained by superposing the 
stresses produced by the axial force and the bending moment. Thus, the equa-
tion for the combined stresses is

	
N
A

My
I

 5 2 � (5-58)

Note that N is positive when it produces tension and M is positive, accord-
ing to the bending-moment sign convention (positive bending moment pro-
duces compression in the upper part of the beam and tension in the lower 
part). Also, the y axis is positive upward. As long as these sign conventions are 
used in Eq. (5-58), the normal stress s is positive for tension and negative for 
compression.

The final stress distribution depends upon the relative algebraic values of 
the terms in Eq. (5-58). For this example, the three possibilities are shown in 
Figs. 5-47e, f, and g. If the bending stress at the top of the beam (Fig. 5-47d) 
is numerically less than the axial stress (Fig. 5-47c), the entire cross section is 
in tension, as shown in Fig. 5-47e. If the bending stress at the top equals the 
axial stress, the distribution is triangular (Fig. 5-47f), and if the bending stress 
is numerically larger than the axial stress, the cross section is partially in com-
pression and partially in tension (Fig. 5-47g). Of course, if the axial force is a 
compressive force, or if the bending moment is reversed in direction, the stress 
distributions change accordingly.

Whenever bending and axial loads act simultaneously, the neutral axis (that 
is, the line in the cross section where the normal stress is zero) no longer passes 
through the centroid of the cross section. As shown in Figs. 5-47e, f, and g, 
respectively, the neutral axis may be outside the cross section, at the edge of 
the section, or within the section.

The use of Eq. (5-58) to determine the stresses in a beam with axial loads is 
illustrated later in Example 5-17.

Eccentric Axial Loads
An eccentric axial load is an axial force that does not act through the centroid 
of  the cross section. An example is shown in Fig. 5-48a, where the cantilever 
beam AB is subjected to a tensile load P acting at distance e from the x axis 
(the x axis passes through the centroids of  the cross sections). The distance e,  
called the eccentricity of  the load, is positive in the positive direction of  the 
y axis.

The eccentric load P is statically equivalent to an axial force P acting along 
the x axis and a bending moment Pe acting about the z axis (Fig. 5-48b). Note 
that the moment Pe is a negative bending moment.

A cross-sectional view of the beam (Fig. 5-48c) shows the y and z axes pass-
ing through the centroid C of the cross section. The eccentric load P intersects 
the y axis, which is an axis of symmetry.

Q P

S

V M

N
x

L

(a)

(b)

(c) (d) (e) (f) (g)

+ +

+ + + + +

– –

x

y

x

y

Figure 5-47
Normal stresses in a cantilever 
beam subjected to both bending 
and axial loads: (a) beam with load 
P acting at the free end, (b) stress 
resultants N, V, and M acting on a 
cross section at distance x from the 
support, (c) tensile stresses due to 
the axial force N acting alone, (d) 
tensile and compressive stresses due 
to the bending moment M acting 
alone, and (e), (f), (g) are possible 
final stress distributions due to the 
combined effects of N and M

Bending due to self-weight of beam 
and axial compression due to hor-
izontal component of cable lifting 
force 

(L
es

te
r L

ef
ko

w
itz

/G
et

ty
 Im

ag
es

)

93347_ch05_hr_445-552.indd   503 10/25/16   5:29 PM



504	 Chapter 5  Stresses in Beams (Basic Topics)

Since the axial force N at any cross section is equal to P, and since the 
bending moment M is equal to 2Pe, the normal stress at any point in the cross 
section [from Eq. (5-58)] is

	
P
A

Pey
I

 5 1 	 (5-59)

in which A is the area of the cross section and I is the moment of inertia about 
the z axis. The stress distribution obtained from Eq. (5-59), for the case where 
both P and e are positive, is shown in Fig. 5-48d.

The position of the neutral axis nn (Fig. 5-48c) can be obtained from 
Eq. (5-59) by setting the stress s equal to zero and solving for the coordinate y, 
denoted as 0y . The result is

	 y
I

Ae0 5 2 	 (5-60)

The coordinate 0y  is measured from the z axis (which is the neutral axis under 
pure bending) to the line nn of  zero stress (the neutral axis under combined 
bending and axial load). Because 0y  is positive in the direction of  the y axis 
(upward in Fig. 5-48c), it is labeled 0y2  when it is shown downward in the figure.

From Eq. (5-60), note that the neutral axis lies below the z axis when e is 
positive and above the z axis when e is negative. If the eccentricity is reduced, 
the distance 0y  increases and the neutral axis moves away from the centroid. In 
the limit, as e approaches zero, the load acts at the centroid, the neutral axis is 
at an infinite distance, and the stress distribution is uniform. If the eccentricity 
is increased, the distance 0y  decreases and the neutral axis moves toward the 
centroid. In the limit, as e becomes extremely large, the load acts at an infinite 
distance, the neutral axis passes through the centroid, and the stress distribu-
tion is the same as in pure bending. 

e

Pe

(a)

(b)

(d)(c)

–y0

+

A B P

A B
P

C

x

y

y

x

z

y

n n n

e
P× σ

–

Figure 5-48
(a) Cantilever beam with an  
eccentric axial load P,  
(b) equivalent loads P and Pe,  
(c) cross section of beam, and  
(d) distribution of normal stresses  
over the cross section
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Eccentric axial loads are analyzed in some of the problems at the end of 
this chapter.

Limitations
The preceding analysis of beams with axial loads is based upon the assumption 
that the bending moments can be calculated without considering the deflections 
of the beams. In other words, when determining the bending moment M for use 
in Eq. (5-58), you must be able to use the original dimensions of the beam—that 
is, the dimensions before any deformations or deflections occur. The use of the 
original dimensions is valid provided the beams are relatively stiff  in bending, 
so that the deflections are very small.

Thus, when analyzing a beam with axial loads, it is important to distinguish 
between a stocky beam, which is relatively short and therefore highly resistant 
to bending, and a slender beam, which is relatively long and therefore very flex-
ible. In the case of a stocky beam, the lateral deflections are so small as to have 
no significant effect on the line of action of the axial forces. As a consequence, 
the bending moments will not depend upon the deflections, and the stresses 
can be found from Eq. (5-58).

In the case of a slender beam, the lateral deflections (even though small in 
magnitude) are large enough to alter significantly the line of action of the axial 
forces. When that happens, an additional bending moment equal to the prod-
uct of the axial force and the lateral deflection is created at every cross section.  
In other words, there is an interaction, or coupling, between the axial effects and 
the bending effects. This type of behavior is discussed in Chapter 11 on columns.

The distinction between a stocky beam and a slender beam is obviously not 
a precise one. In general, the only way to know whether interaction effects are 
important is to analyze the beam with and without the interaction and notice 
whether the results differ significantly. However, this procedure may require 
considerable calculating effort. Therefore, as a guideline for practical use, con-
sider a beam with a length-to-height ratio of 10 or less to be a stocky beam. 
Only stocky beams are considered in the problems pertaining to this section.

A tubular beam ACB with a length of 60 in.L 5  is pin-supported at its ends, A and B.  
A powered winch at E lifts load W below C using a cable which passes over a fric-
tionless pulley at midlength (point D, Fig. 5-49a). The distance from the center of the 
pulley to the longitudinal axis of the tube is 5.5 in.d 5  The cross section of the tube 
is square (Fig. 5-49b) with an outer dimension of 6.0 in.b 5 , area of 20.0 in2A 5 ,  
and moment of inertia of 86.67 in4I 5 .

(a)	 Determine the maximum tensile and compressive stresses in the beam due to a 
load 3000 lbW 5 .

(b)	If the allowable normal stress in the tube is 3500 psi, find the maximum per-
missible load W. Assume that the cable, pulley, and bracket CD are adequate 
to carry load maxW .

Example 5-17
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506	 Chapter 5  Stresses in Beams (Basic Topics)

Solution:
Use a four-step problem-solving approach. Combine steps as needed for an efficient 
solution.

Part (a): Maximum tensile and compressive stresses in the beam.

1, 2.  �Conceptualize, Categorize: 

Beam and loading: Begin by representing the beam and its load in idealized form 
for the purposes of analysis (Fig. 5-50a). Since the support at end A resists both 
horizontal and vertical displacement, it is represented as a pin support. The sup-
port at B prevents vertical displacement but offers no resistance to horizontal 
displacement, so it is shown as a roller support.

Replace the cable forces at D with statically equivalent forces FH and FV   
and moment MO, all of which are applied on the axis of the beam at C  
(see Fig. 5-50a):

cos( ) 2598 lb [1 sin( )] 4500 lb

cos( ) 14,289 lb-in.0

F W F W

M W d
H Vu u

u

5 5 5 1 5

5

(a)

A
C

Bx

y M0 = W cos(θ) d

FH = W cos(θ)

RB
RA

RH

= 30 in.

FV  = W [1 + sin(θ)]

L
2
— = 30 in.

L
2
—

(b)

0 L/2 L/2

N
2598 lb

Figure 5-50
Solution of Example 5-17:  
(a) Idealized beam and loading,  
(b) axial-force diagram,  
(c) shear-force diagram,  
and (d) bending-moment  
diagram
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Figure 5-49
Example 5-17: Tubular beam subjected to combined bending and axial load
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Reactions and stress resultants: The reactions of the beam (RH, RA, and RB)  
are labeled in Fig. 5-50a. Also, the diagrams of axial force N, shear force V, 
and bending moment M are shown in Figs. 5-50b, c, and d, respectively. All of 
these quantities are found from free-body diagrams and equations of equilib-
rium using the techniques described in Chapter 4. For example, use equations 
of statics to find that

	 0 : cos( ) (3000 lb) cos (30 ) 2598 lbF R F WH H H uS 5 5 2 5 2 5 2 8 5 2 � (a)

0 :
1

2 2
[1 sin( )] [cos( )]

(3000 lb)
1 sin (30 )

2
5.5 in.
60 in.

cos (30 ) 2012 lb

0


















M R
L

F
L

M
W

W
d
L

R

A B V

B

u uS 5 5 2 5 1 2

5
1 8

2 8 5

� (b)

	 0 : (3000 lb)(1 sin (30 )) 2012 lb 2488 lbF R F RV A V BS 5 5 2 5 1 8 2 5 � (c)

Next, use the axial-force (N), shear-force (V), and bending-moment (M) 
diagrams (Figs. 5-50b, c, and d, respectively) to find the combined stresses  
in beam ACB using Eq. (5-58).

	3.	 Analyze: 

Stresses in the beam: The maximum tensile stress in the beam occurs at the 
bottom of the beam ( 3.0 in.)y 5 2  just to the left of the midpoint C. Note 
that at this point in the beam the tensile stress due to the axial force adds 
to the tensile stress produced by the largest bending moment. Thus, from 
Eq. (5-58),

	
( )

2598 lb

20 in

(74,640 lb-in.)( 3 in.)

86.67 in
130 psi 2583 psi 2713 psi

max 2 4
N
A

My
It 5 2 5 2

2

5 1 5

�

(d)

0

M

(RA)(L /2) = 74,640 lb-in.

(RB)(L/2) = 60,360 lb-in.

(c)

0
V

–2012 lb

2488 lb
Figure 5-50 (Continued)
Solution of Example 5-17:  
(a) Idealized beam and loading,  
(b) axial-force diagram,  
(c) shear-force diagram,  
and (d) bending-moment  
diagram
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The maximum compressive stress occurs either at the top of the beam 
( 3.0 in.)y 5  to the left of point C or at the top of the beam to the right of  
point C. These two stresses are calculated as

( )
2598 lb

20 in

(74,640 lb-in.)(3 in.)

86.67 in
130 psi 2583 psi 2453 psi

( ) 0
(60,360 lb-in.)(3 in.)

86.67 in
2089 psi

left 2 4

right 4

N
A

My
I

N
A

My
I

c

c





5 2 5 2

5 2 5 2

5 2 5 2 5 2

Thus, the maximum compressive stress is

	 c( ) 2453 psimax 5 2 �

and occurs at the top of the beam to the left of point C.

Part (b): Maximum permissible load W.

1, 2.  �Conceptualize, Categorize: From Eq. (a), the tensile stress at the bottom of 
the beam just left of C (equal to 2713 psi for a load 3000 lbW 5 ) will reach 
allowable normal stress 3500 psia 5  first and thus will be the determining 
factor in finding maxW . Using expressions for reactions [Eqs. (a), (b), and (c)], 
the axial tension force in beam segment AC and the positive moment just left 
of C are

        cos( )
2

1 sin( )
2

cos( )
2











N W M R

L
W

d
L

L
Au

u
u5 5 5

1
1

From Eq. (5-58), the combined normal stress is

cos( )
1 sin( )

2
cos( )

2 2
















W

A

W
d
L

L b

Ia
u

u
u

5 2

1
1

2

3.   Analyze: Solving for maxW W5  gives

	
cos( ) [1 sin( )]

8
cos( )
4

3869 lbmaxW

A
bL

I
bd

I

a

u u u
5

1
1

1
5 �

4. � Finalize: This example shows how the normal stresses in a beam due to com-
bined bending and axial load can be determined. The shear stresses acting 
on cross sections of the beam (due to the shear forces V) can be determined 
independently of the normal stresses, as described earlier in this chapter. 
Later, in Chapter 7, stresses on inclined planes are computed when both the 
normal and shear stresses acting on cross-sectional planes are known.
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*5.13  Stress Concentrations in Bending
The flexure and shear formulas discussed in earlier sections of this chapter are 
valid for beams without holes, notches, or other abrupt changes in dimensions. 
Whenever such discontinuities exist, high localized stresses are produced. These 
stress concentrations can be extremely important when a member is made of 
brittle material or is subjected to dynamic loads. (See Chapter 2, Section 2.10, for 
a discussion of the conditions under which stress concentrations are important.)

For illustrative purposes, two cases of stress concentrations in beams are 
described in this section. The first case is a beam of rectangular cross section 
with a hole at the neutral axis (Fig. 5-51). The beam has a height h and thickness 
b (perpendicular to the plane of the figure) and is in pure bending under the 
action of bending moments M.

When the diameter d of the hole is small compared to the height h, the stress 
distribution on the cross section through the hole is approximately as shown by 
the diagram in Fig. 5-51a. At point B on the edge of the hole, the stress is much 
larger than the stress that would exist at that point if the hole were not present. 
(The dashed line in the figure shows the stress distribution with no hole.) How-
ever, moving toward the outer edges of the beam (toward point A), the stress 
distribution varies linearly with distance from the neutral axis and is only slightly 
affected by the presence of the hole.

When the hole is relatively large, the stress pattern is approximately as shown 
in Fig. 5-51b. There is a large increase in stress at point B and only a small change 
in stress at point A, as compared to the stress distribution in the beam without 
a hole (again shown by the dashed line). The stress at point C is larger than the 
stress at A but smaller than the stress at B.

Extensive investigations have shown that the stress at the edge of the hole 
(point B) is approximately twice the nominal stress at that point. The nomi-
nal stress is calculated from the flexure formula in the standard way, that is, 

/My I 5 , in which y is the distance d/2 from the neutral axis to point B and I 
is the moment of inertia of the net cross section at the hole. Thus, the following 
approximate formula can be used to find the stress at point B:

	
My
I

Md

b h dB 2
12

( )3 3 5
2

< � (5-61)

At the outer edge of the beam (at point C), the stress is approximately equal to 
the nominal stress (not the actual stress) at point A (where /2y h5 ):

	
My
I

Mh

b h dC
6

( )3 3 5
2

< � (5-62)

From the last two equations, the ratio /B C   is approximately 2d/h. Hence, when 
the ratio d/h of  hole diameter to height of beam exceeds 1/2, the largest stress 
occurs at point B. When d/h is less than 1/2, the largest stress is at point C.

The second case is a rectangular beam with notches (Fig. 5-52). The beam 
shown in the figure is subjected to pure bending and has a height h and thickness b  
(perpendicular to the plane of the figure). Also, the net height of the beam (that 
is, the distance between the bases of the notches) is  1h , and the radius at the 
base of each notch is R. The maximum stress in this beam occurs at the base 

(a)

(b)

h

h

d

d

M

MM

M

A

A

B

B

C

Figure 5-51
Stress distributions in a beam in 
pure bending with a circular hole 
at the neutral axis (The beam has 
a rectangular cross section with 
height h and thickness b)
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510	 Chapter 5  Stresses in Beams (Basic Topics)

of the notches and may be much larger than the nominal stress at that same 
point. The nominal stress is calculated from the flexure formula with /21y h5  
and /121

3I bh5 ; thus,

	
My
I

M

bh

6
nom

1
2 5 5 � (5-63)

The maximum stress is equal to the stress-concentration factor K times the 
nominal stress:

	 Kmax nom 5 � (5-64)

The stress-concentration factor K is plotted in Fig. 5-52 for a few values of the 
ratio / 1h h . Note that when the notch becomes “sharper,” that is, the ratio / 1R h  
becomes smaller, the stress-concentration factor increases. (Fig. 5-52 is plotted 
from the formulas given in Ref. 2-9.)

The effects of the stress concentrations are confined to small regions 
around the holes and notches, as explained in the discussion of Saint-Venant’s 
principle in Section 2.10. At a distance equal to h or greater from the hole or 
notch, the stress-concentration effect is negligible and the ordinary formulas 
for stresses may be used.

h = h1 + 2R

R—
h1

3.0

2.5

2.0

1.5
0 0.05 0.10 0.15 0.20 0.25 0.30

K

1.05

= 1.2

1.1

b = thickness

K = 
σmax
σnom

  =  6M
  bh  2  1

σnom

h1h

M M

2R
h
h1
—

Figure 5-52
Stress-concentration factor K  
for a notched beam of rectangular  
cross section in pure bending  
(h 5 height of beam; b 5 thickness  
of beam, perpendicular to the  
plane of the figure), where the dashed  
line is for semicircular notches  
( 2 )1h h R5 1

A simple beam AB with rectangular cross section (b × h) has a hole with a diam-
eter of d at its centerline and two notches on either side and equidistant from the 
beam centerline. Beam AB is simply supported, and loads P are applied at L/5 from 
each end of the beam. Assume that dimensions given in Fig. 5-53 are 4.5 mL 5 ,  

50 mmb 5 , 144 mmh 5 , 120 mm1h 5 , 85 mmd 5 , and 10 mmR 5 . Assume that 
the allowable bending stress is 150 MPaa 5 .

(a)	 Find the maximum permissible value of applied load P.

(b)	If 11 kNP 5 , find the smallest acceptable radius of the notches, minR .

(c)	 If 11 kNP 5 , find the maximum acceptable diameter of the hole at mid-height 
of beam.

Example 5-18

93347_ch05_hr_445-552.indd   510 10/25/16   5:29 PM



	 Section 5.13  Stress Concentrations in Bending	 511

Solution:
Use a four-step problem-solving approach. Combine steps as needed for an efficient 
solution.

Part (a): Maximum permissible load P.

1, 2.  �Conceptualize, Categorize: The central part of the beam between the loads 
( /5 to 4 /5)P x L x L5 5  is in pure bending, and the maximum moment in 

this region is /5M PL5 . To find maxP , compare the maximum bending stress 
(at midspan around the hole and in the notch regions) to the allowable stress 
value of 150 MPaa 5 .

First, check the maximum stresses around the hole. The hole 
diameter-to-beam depth ratio / 85 mm/144 mm 0.59d h 5 5  exceeds 1/2, so 
the stress at B rather than at C (Fig. 5-51) will govern. Setting B  equal to a  
and substituting PL/5 for M in Eq. (5-61) gives the expression  
for maxP :

M
b h d

d
P

L
b h d

da a

































( )
12

and
5 ( )

12max

3 3

max1

3 3

 5
2

5
2

 

	3.	 Analyze: Use this expression to compute

5
4.5 m

150 MPa
50 mm[(144 mm ) (85 mm) ]

12(85 mm)
19.38 kNmax1

3 3

P 5
2

5






















Next, check the peak stresses at the base of the two notches to get a second 
value of maxP . The ratio of notch radius R to height 1h  is equal to 0.083, and 
the ratio / 1.21h h 5 . So from Fig. 5-52, the stress concentration factor K is 
approximately equal to 2.3 (see Fig. 5-54).

Use Eqs. (5-63) and (5-64) to get the expressions:

K K
M

bh
K

bh

PL





















6 6
5max nom

1
2

1
2 5 5 5

so

5
6

150 MPa
5(50 mm)(120 mm)

6(2.3)(4.5 m)
8.7 kNmax2

1
2 2

P
bh
KLa5 5 5





















A

L/5 P P

hh1 d

b2R

B

L/5
Figure 5-53
Example 5-18: Rectangular  
steel beam with notches  
and a hole
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512	 Chapter 5  Stresses in Beams (Basic Topics)

	4.	 Finalize: Compare max1P  and max2P , to see that the peak stress at the base of 
the notches controls, so

	 P 8.7 kNmax 5 �

Part (b): Smallest acceptable radius R of the notches.

	1, 2.  �Conceptualize, Categorize: The stress concentration factor K in Fig. 5-52 
increases as the ratio of the notch radius R to dimension 1h  decreases.

3, 4.  Analyze, Finalize: Compute the nominal stress using Eq. (5-63) as

6
5 6(11 kN)(4.5 m)

5(50 mm)(120 mm)
82.5 MPanom

1
2 2

PL

bh
 5 5 5



 




Then set the maximum bending stress max  equal to the allowable stress 
150 MPaa 5  to find the stress concentration factor K:

K a 150 MPa
82.5 MPa

1.82
nom




5 5 5

From Fig. 5-55, with / 1.21h h 5  and 1.82K 5 , obtain

	
R
h

R0.16 so 0.16(120 mm) 19.2 mm
1

min5 5 5 �

h = h1 + 2R

R—
h1

3.0

2.5

2.0

1.5
0 0.05 0.10 0.15 0.20 0.25 0.30

K

1.05

0.083

2.3

= 1.2

1.1

b = thickness

K = 
σmax
σnom

  =  6M
  bh  2  1

σnom

h1h

M M

2R
h
h1
—

Figure 5-54
Stress concentration  
factor K in notch regions  
of beam for part (a) of  
Example 5-18
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Part (c): Maximum acceptable diameter of the hole.

1, 2.  �Conceptualize, Categorize: Begin by assuming that ratio d/h > 1/2, and 
start with Eq. (5-61) (which assumes that maximum bending stress is at B, as 
in Fig. 5-51) to find maxd . If d/h turns out to be less than 1/2, use Eq. (5-62), 
which means that maximum bending stress is in fact at point C. If the peak 
stress is at B, write Eq. (5-61) as

PL
d

b h d a





12

5
( )3 3 

2
5

 3.	 Analyze: Solve the previous equation numerically to find that 
108.3 mmmaxd 5 .�

4.	 Finalize: The original assumption about the d/h ratio is confirmed, since 
/ 0.752maxd h 5  exceeds 1/2, so the peak stress is indeed at B and not at C.

h = h1 + 2R

R—
h1

3.0

2.5

2.0

1.5
0 0.05 0.10 0.15 0.20 0.25 0.30

K

1.05

0.16

= 1.2

1.1

b = thickness

K = 
σmax
σnom

  =  6M
  bh  2  1

σnom

h1h

M M

2R
h
h1
—

1.82

Figure 5-55
Stress concentration  
factor K in notch regions  
of beam for part (b)  
of Example 5-18
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CHAPTER SUMMARY AND REVIEW

Chapter 5 covered the behavior of beams with loads applied and bending occur-
ring in the -x y plane: a plane of symmetry in the beam cross section. Both pure 
bending and nonuniform bending were considered. The normal stresses ( )  were 
seen to vary linearly from the neutral surface in accordance with the flexure 
formula. Horizontal and vertical shear stresses ( )  were computed using the shear 
formula for the case of nonuniform bending of beams with either rectangular 
or circular cross sections. The special cases of shear in beams with flanges and 
built-up beams also were considered. Finally, stocky beams with both axial and 
transverse loads were discussed, followed by an evaluation of localized stresses 
in beams with abrupt changes in cross section around notches or holes.

Here are some of the major concepts and findings presented in this chapter.

1.	 If  the xy plane is a plane of symmetry of a beam cross section and applied 
loads act in the -x y plane, the bending deflections occur in this same plane, 
known as the plane of bending.

2.	 A beam in pure bending has constant curvature k, and a beam in nonuni-
form bending has varying curvature. Longitudinal strains ( )x«  in a bent 
beam are proportional to its curvature, and the strains in a beam in pure 
bending vary linearly with distance from the neutral surface, regardless of 
the shape of the stress-strain curve of the material, as

yx« k5 2

BA

P

(a)

A

y

x dx

ds

(b)

B

x
m1

m2

dθ
O′

ρ

3.	 The neutral axis passes through the centroid of the cross-sectional area 
when the material follows Hooke’s law and there is no axial force acting on 
the cross section. When a beam of linearly elastic material is subjected to 
pure bending, the y and z axes are principal centroidal axes.

4.	 If  the material of a beam is linearly elastic and follows Hooke’s law, the 
moment-curvature equation shows that the curvature is directly propor-
tional to the bending moment M and inversely proportional to the quan-
tity EI, the flexural rigidity of  the beam. The moment curvature relation is

M
EI

k 5

5.	 The flexure formula shows that the normal stresses x  are directly propor-
tional to the bending moment M and inversely proportional to the moment 
of inertia I of  the cross section:

My
Ix 5 2

sx

O

M

x

y
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The maximum tensile and compressive bending stresses acting at any given 
cross section occur at points located farthest from the neutral axis. Thus,

y c y c( , )1 25 5 2

6.	 The normal stresses calculated from the flexure formula are not signifi-
cantly altered by the presence of shear stresses and the associated warping 
of the cross section for the case of nonuniform bending. However, the 
flexure formula is not applicable near the supports of a beam or close to a 
concentrated load, because such irregularities produce stress concentrations 
that are much greater than the stresses obtained from the flexure formula.

7.	 To design a beam to resist bending stresses, calculate the required section 
modulus S from the maximum moment and allowable normal stress as

S
Mmax

allow
5

To minimize weight and save material, select a beam from a material design 
manual (see sample tables in Appendixes F and G for steel and wood) that 
has the least cross-sectional area while still providing the required section 
modulus; wide-flange sections and I-sections have most of their material in 
the flanges, and the width of their flanges helps to reduce the likelihood of 
sideways buckling.

8.	 Nonprismatic beams (found in automobiles, airplanes, machinery, bridges, 
buildings, tools, and many other applications) commonly are used to 
reduce weight and improve appearance. The flexure formula gives reason-
ably accurate values for the bending stresses in nonprismatic beams, pro-
vided that the changes in cross-sectional dimensions are gradual. However, 
in a nonprismatic beam, the section modulus also varies along the axis, so 
do not assume that the maximum stresses occur at the cross section with 
the largest bending moment.

9.	 Beams subjected to loads that produce both bending moments (M) and 
shear forces (V) (nonuniform bending) develop both normal and shear 
stresses in the beam. Normal stresses are calculated from the flexure for-
mula (provided the beam is constructed of a linearly elastic material), and 
shear stresses are computed using the shear formula

VQ
Ib

 5

Shear stress varies parabolically over the height of a rectangular beam, and 
shear strain also varies parabolically; these shear strains cause cross sections of 
the beam that were originally plane surfaces to become warped. The maximum 
values of the shear stress and strain ( , )max max   occur at the neutral axis, and 
the shear stress and strain are zero on the top and bottom surfaces of the beam.

10.	The shear formula applies only to prismatic beams and is valid only for 
beams of linearly elastic materials with small deflections; also, the edges 
of the cross section must be parallel to the y axis. For rectangular beams, 
the accuracy of the shear formula depends upon the height-to-width ratio 
of the cross section: The formula may be considered exact for very narrow 
beams but becomes less accurate as width b increases relative to height h. 

y

xz

O

V

h

b

m

m

n

n

τ

τ

ττ
τ τ
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Use the shear formula to calculate the shear stresses only at the neutral axis 
of a beam of circular cross section.
For rectangular cross sections,

	
V
A

3
2max 5 	

and for solid circular cross sections

V
A

4
3max 5

11.	�Shear stresses rarely govern the design of either circular or rectangular 
beams made of metals such as steel and aluminum for which the allowable 
shear stress is usually in the range 25 to 50% of the allowable tensile stress. 
However, for materials that are weak in shear, such as wood, the allowable 
stress in horizontal shear is in the range of 4 to 10% of the allowable bend-
ing stress and so may govern the design.

12.	�Shear stresses in the flanges of wide-flange beams act in both vertical and 
horizontal directions. The horizontal shear stresses are much larger than 
the vertical shear stresses in the flanges. The shear stresses in the web of 
a wide-flange beam act only in the vertical direction, are larger than the 
stresses in the flanges, and may be computed using the shear formula. 
The maximum shear stress in the web of a wide-flange beam occurs at the 
neutral axis, and the minimum shear stress occurs where the web meets the 
flanges. For beams of typical proportions, the shear force in the web is 90 
to 98% of the total shear force V acting on the cross section; the remainder 
is carried by shear in the flanges.

y

z
O

y1

τmax

h
2

h
2

h
2

h
2

b

τ

y

f

O

t

a

y1
h

z

e
d

h1
2

h1
2

h1

τmin

τmax

τmin

h1
2

h1
2

cb

b

τ
h
2
—

h
2
—

13.	Connections between the parts in built-up beams (such as nails, bolts, 
welds, and glue) must be strong enough to transmit the horizontal shear 
forces acting between the parts of the beam. The connections are designed 
using the shear flow formula

f
VQ

I
5

to ensure that the beam behaves as a single entity. Shear flow f is defined as 
horizontal shear force per unit distance along the longitudinal axis of the 
beam.
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14.	Normal stresses in beams with axial loads are obtained by superposing the 
stresses produced by the axial force N and the bending moment M as

N
A

My
I

 5 2

Whenever bending and axial loads act simultaneously, the neutral axis no 
longer passes through the centroid of the cross section and may be outside 
the cross section, at the edge of the section, or within the section. This dis-
cussion applies only to stocky beams for which the lateral deflections are so 
small as to have no significant effect on the line of action of the axial forces.

15.	Stress distributions in beams are altered by holes, notches, or other abrupt 
changes in dimensions leading to high localized stresses or stress concentra-
tions. These are especially important to consider when the beam material is 
brittle or the member is subjected to dynamic loads. The maximum stress 
values may be several times larger than the nominal stress.

h d

MM

A

B

C

h d

MM

A

B
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Representative Problems
5.4-4  A cantilever beam AB is loaded by a couple 

0M  at its free end (see figure). The length of the beam 
is 2.0 mL 5 , and the longitudinal normal strain 
at the top surface is 0.0010« 5 . The distance from 
the top surface of the beam to the neutral surface is 

85 mmc 5 .

(a)	Calculate the radius of curvature r, the curva-
ture k, and the vertical deflection d  at the end of 
the beam.

(b)	If  allowable strain 0.0008a« 5 , what is the max-
imum acceptable depth of the beam? [Assume 
that the curvature is unchanged from part(a)].

(c)	 If  allowable strain 0.0008a« 5 , 85 mmc 5 , and 
4 mL 5 , what is deflection d?

5.4-2  A copper wire having a diameter of 4 mmd 5  
is bent into a circle and held with the ends just touch-
ing (see figure).

(a)	If  the maximum permissible strain in the copper 
is 0.0024max« 5 , what is the shortest length L 
of  wire that can be used?

(b)	If  5.5 mL 5 , what is the maximum acceptable 
diameter of the wire if  the maximum normal 
strain must remain below yield? Assume 

120 GPaE 5  and 300 MPaY 5 .

Problems Chapter 5
5.4 Longitudinal Strains in Beams
Introductory Problems
5.4-1  A steel wire with a diameter of 1/16 in.d 5  
is bent around a cylindrical drum with a radius of 

36 in.R 5  (see figure).

(a)	Determine the maximum normal strain max« .
(b)	What is the minimum acceptable radius of 

the drum if  the maximum normal strain must 
remain below yield? Assume 30,000 ksiE 5  and 

100 ksiY 5 .
(c)	 If  36 in.R 5 , what is the maximum acceptable 

diameter of the wire if  the maximum normal 
strain must remain below yield?

5.4-3  A 4.75-in. outside diameter polyethylene 
pipe designed to carry chemical waste is placed 
in a trench and bent around a quarter-circular 908 
bend (see figure). The bent section of the pipe is  
52 ft long.

(a)	Determine the maximum compressive strain 

max«  in the pipe.
(b)	If  the normal strain cannot exceed 6.1 10 33 2 , 

what is the maximum diameter of the pipe?
(c)	 If  4.75 in.d 5 , what is the minimum acceptable 

length of the bent section of the pipe?

Problem 5.4-2

d = diameter

L = length

Problem 5.4-1

d

R

Problem 5.4-3

90°
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(b)	If  allowable strain 0.0006a« 5  and the deflec-
tion cannot exceed 4.3 mm, what is the maxi-
mum permissible length of the bar?

5.4-7  A simply supported beam with a length L 5 
10 ft and height 7 in. is bent by couples 0M  into a cir-
cular arc with downward deflection d at the midpoint. 
If the curvature of the beam is 0.003 ft 12 , calculate  
the deflection, d, at the mid-span of the beam and the 
longitudinal strain at the bottom fiber given that the 
distance between the neutral surface and the bottom 
surface is 3.5 in.

5.4-5  A thin strip of steel with a length of 19 in.L 5  
and thickness of 0.275 in.t 5  is bent by couples 0M  
(see figure). The deflection at the midpoint of the 
strip (measured from a line joining its end points) is 
found to be 0.30 in.

(a)	Determine the longitudinal normal strain « at 
the top surface of the strip.

(b)	If  allowable strain 0.0008a« 5 , what is the max-
imum acceptable thickness of the strip?

(c)	 If  allowable strain 0.0008a« 5 , 0.275 in.t 5 , 
and 32 in.L 5 , what is deflection d?

(d)	If  allowable strain 0.0008a« 5 , 0.275 in.t 5 , 
and the deflection cannot exceed 1.0 in., what is 
the maximum permissible length of the strip?

Problem 5.4-4

A

B
M0L

t

M0M0

δ

L
2
— L

2
—

Problem 5.4-5

5.4-6  A bar of rectangular cross section is loaded 
and supported as shown in the figure. The distance 
between supports is 1.75 mL 5 , and the height of the 
bar is 140 mmh 5 . The deflection at the midpoint is 
measured as 2.5 mm.

(a)	What is the maximum normal strain « at the top 
and bottom of the bar?

P
h

P

a a

δ

L
2
— L

2
—

Problem 5.4-6

Problem 5.4-7

A B

M0M0
h

L

5.4-8  A cantilever beam is subjected to a concen-
trated moment at B. The length of the beam 3L 5  m 
and the height 600h 5  mm. The longitudinal strain 
at the top of the beam is 0.0005 and the distance from 
the neutral surface to the bottom surface of the beam 
is 300 mm. Find the radius of curvature, the curva-
ture, and the deflection of the beam at B.

5.5 Normal Stresses in Beams (Linearly 
Elastic Materials)
Introductory Problems
5.5-1  A thin strip of hard copper ( 16,000 ksi)E 5  
having length 90 in.L 5  and thickness 3/32 in.t 5  is 
bent into a circle and held with the ends just touching 
(see figure).

(a)	Calculate the maximum bending stress max  in 
the strip.

(b)	By what percent does the stress increase or 
decrease if  the thickness of the strip is increased 
by 1/32 in.?

Problem 5.4-8

A B

M0

L
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Representative Problems
5.5-4  A simply supported wood beam AB with a 
span length 4 mL 5  carries a uniform load of inten-
sity 5.8 kN/mq 5  (see figure).

(a)	Calculate the maximum bending stress max  
due to the load q if  the beam has a rectangular 
cross section with width 140 mmb 5  and height 

240 mmh 5 .
(b)	Repeat part (a) but use the trapezoidal distrib-

uted load shown in the figure part b.

(c)	 Find the new length of the strip so that the stress 
in part (b) ( 1/8 in. and 90 in.)t L5 5  is equal to 
that in part (a) ( 3/32 in. and 90 in.)t L5 5 .

Problem 5.5-3

L = length

M0M0

t

a

Problem 5.5-2

d

R0

Problem 5.5-1

3
32

t = —  in.

5.5-2  A steel wire ( 200 GPa)E 5  of a diameter 
1.25 mmd 5  is bent around a pulley of a radius 

500 mm0R 5  (see figure).

(a)	What is the maximum stress max  in the wire?
(b)	By what percent does the stress increase or decrease 

if the radius of the pulley is increased by 25%?
(c)	 By what percent does the stress increase or 

decrease if  the diameter of the wire is increased 
by 25% while the pulley radius remains at 

500 mm0R 5 ?

5.5-3  A thin, high-strength steel rule (E 5 30 3  
10 psi)6  having a thickness 0.175 in.t 5  and length 

48 in.L 5  is bent by couples 0M  into a circular arc 
subtending a central angle 40a 5 8 (see figure).

(a)	What is the maximum bending stress max  in the 
rule?

(b)	By what percent does the stress increase or 
decrease if  the central angle is increased by 10%?

(c)	 What percent increase or decrease in rule thick-
ness will result in the maximum stress reaching 
the allowable value of 42 ksi?

Problem 5.5-4

(a)

q
2
—

A

L 

B

q

h

b

(b)

A

L 

B

q

5.5-5  Beam ABC has simple supports at A and B 
and an overhang from B to C. The beam is constructed 
from a steel W 16 3 31. The beam must carry its own 
weight in addition to uniform load 150 lb/ftq 5 .  
Determine the maximum tensile and compressive 
stresses in the beam.
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the axle boxes) and the forces R representing the rail 
loads (transmitted to the axle through the wheels). 
The diameter of the axle is 82 mmd 5 , the distance 
between centers of the rails is L, and the distance 
between the forces P and R is 220 mmb 5 .

Calculate the maximum bending stress max  in 
the axle if 50 kNP 5 .

5.5-6  A simply supported beam is subjected to a 

linearly varying distributed load ( ) 0q x
x
L

q5  with 

maximum intensity 0q  at B. The beam has a length  
4 mL 5  and rectangular cross section with a width 

of 200 mm and height of 300 mm. Determine the 
maximum permissible value for the maximum inten-
sity, 0q , if the allowable normal stresses in tension and 
compression are 120 MPa.

Problem 5.5-7

Problem 5.5-5

A
B

C

10 ft 5 ft

q

B

L
x

q(x)
q0

A

Problem 5.5-6

28 mm

52 mm

620 mm

2600 mm

Problem 5.5-10

5.5-7  Each girder of the lift bridge (see figure) is 
180 ft long and simply supported at the ends. The 
design load for each girder is a uniform load of inten-
sity 1.6 kips/ft. The girders are fabricated by welding 
three steel plates to form an I-shaped cross section 
(see figure) having section modulus 3600 in3S 5 .

What is the maximum bending stress max  in a 
girder due to the uniform load?

5.5-8  A freight-car axle AB is loaded approxi-
mately as shown in the figure, with the forces P repre-
senting the car loads (transmitted to the axle through 

Problem 5.5-8

d
d

b b

A

P P

RR

L

B

5.5-9  A seesaw weighing 3 lb/ft of length is occu-
pied by two children, each weighing 90 lb (see fig-
ure). The center of gravity of each child is 8 ft from 
the fulcrum. The board is 19 ft long, 8 in. wide, and  
1.5 in. thick.

What is the maximum bending stress in the board?

Problem 5.5-9

5.5-10  During construction of a highway bridge, 
the main girders are cantilevered outward from one 
pier toward the next (see figure). Each girder has 
a cantilever length of 48 m and an I-shaped cross 
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5.5-13  A fiberglass pipe is lifted by a sling, as 
shown in the figure. The outer diameter of the pipe is  
6.0 in., its thickness is 0.25 in., and its weight den-
sity is 0.053 lb/in3. The length of the pipe is 36 ftL 5   
and the distance between lifting points is 11 fts 5 .

(a)	Determine the maximum bending stress in the 
pipe due to its own weight.

(b)	Find the spacing s between lift points which 
minimizes the bending stress. What is the mini-
mum bending stress?

(c)	 What spacing s leads to maximum bending 
stress? What is that stress?

section with dimensions shown in the figure. The load  
on each girder (during construction) is assumed to 
be 9.5 kN/m, which includes the weight of the girder.

Determine the maximum bending stress in a 
girder due to this load.

5.5-11  The horizontal beam ABC of an oil-well 
pump has the cross section shown in the figure. If the 
vertical pumping force acting at end C is 9 kips and 
if the distance from the line of action of that force to 
point B is 16 ft, what is the maximum bending stress 
in the beam due to the pumping force?

5.5-12  A railroad tie (or sleeper) is subjected to two 
rail loads, each of magnitude 175 kNP 5 , acting as 
shown in the figure. The reaction q of the ballast is 
assumed to be uniformly distributed over the length 
of the tie, which has cross-sectional dimensions 

300 mmb 5  and 250 mmh 5 .
Calculate the maximum bending stress max  in 

the tie due to the loads P, assuming the distance 
1500 mmL 5  and the overhang length 500 mma 5 .

L

q

P P
b

h

a a

Problem 5.5-12

Horizontal beam transfers loads as part of oil well pump

Ga
br

ie
l M

. C
ov

ia
n/

Ge
tt

y 
Im

ag
es

Problem 5.5-11

0.625
in.

0.875 in.

8.0 in.

22 in.

ABC

s

L

Problem 5.5-13

5.5-14  A small dam of height h 52.0 m is constructed 
of vertical wood beams AB of thickness 120 mmt 5 ,  
as shown in the figure. Consider the beams to be sim-
ply supported at the top and bottom.

Determine the maximum bending stress max  in 
the beams, assuming that the weight density of water 
is 9.81 kN/m3 5 .

Problem 5.5-14

h

t

A

B
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5.5-18  Determine the maximum tensile stress t  
and maximum compressive stress c  due to the load P  
acting on the simple beam AB (see figure).

(a)	Data are 6.2 kNP 5 , 3.2 mL 5 , 1.25 md 5 ,  
80 mmb 5 , 25 mmt 5 , 120 mmh 5 , and 
90 mm1h 5 .

(b)	Find the value of d for which tensile and 
compressive stresses are the largest. What are 
these stresses?

5.5-15  Determine the maximum tensile stress t  
(due to pure bending about a horizontal axis through 
C by positive bending moments M) for beams having 
cross sections as follows (see figure).

(a)	A semicircle of diameter d.
(b)	An isosceles trapezoid with bases 1b b5   

and 4 /32b b5  and altitude h.
(c)	 A circular sector with /3a p5  and /2r d5

α α

y

x

(c)

r

C

O

C h

(a)

d

(b)

b2

b1

xc

xc

y

x x

C xc

Problem 5.5-15

5.5-16  Determine the maximum bending stress 

max  (due to pure bending by a moment M) for a 
beam having a cross section in the form of a circu-
lar core (see figure). The circle has diameter d and 
the angle 60b 5 8. Hint: Use the formulas given in 
Appendix E, Cases 9 and 15.

Problem 5.5-16

C

d

b

b

5.5-17  A simple beam AB of a span length 24 ftL 5  
is subjected to two wheel loads acting at a distance 

5 ftd 5  apart (see figure). Each wheel transmits a 
load 3.0 kipsP 5 , and the carriage may occupy any 
position on the beam.

(a)	Determine the maximum bending stress max  
due to the wheel loads if  the beam is an I-beam 
having section modulus 16.2 in3S 5 .

(b)	If  5 ftd 5 , find the required span length L to 
reduce the maximum stress in part (a) to 18 ksi.

(c)	 If  24 ftL 5 , find the required wheel spacing s to 
reduce the maximum stress in part (a) to 18 ksi.

Problem 5.5-17

A B C

d
P P

L

Problem 5.5-18

d

A B

P

b

h1h

t

L

5.5-19  A cantilever beam AB, loaded by a uniform 
load and a concentrated load (see figure), is con-
structed of a channel section.

(a)	Find the maximum tensile stress t  and maxi-
mum compressive stress c  if  the cross section 
has the dimensions indicated and the moment 
of inertia about the z axis (the neutral axis) is 

3.36 in4I 5 . Note: The uniform load represents 
the weight of the beam.

(b)	Find the maximum value of the concentrated 
load if  the maximum tensile stress cannot exceed 
4 ksi and the maximum compressive stress is 
limited to 14.5 ksi.

(c)	 How far from A can load 250P 5  lb be posi-
tioned if  the maximum tensile stress cannot 
exceed 4 ksi and the maximum compressive 
stress is limited to 14.5 ksi?
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5.5-22  A frame ABC travels horizontally with an 
acceleration 0a  (see figure). Obtain a formula for the 
maximum stress max  in the vertical arm AB, which 
has length L, thickness t, and mass density r.

5.5-20  A cantilever beam AB of an isosceles trapezoi-
dal cross section has a length 0.8 mL 5 , dimensions 

80 mm1b 5  and 90 mm2b 5 , and height 110 mmh 5  
(see figure). The beam is made of brass weighing 
85 kN/m3.

(a)	Determine the maximum tensile stress t  and 
maximum compressive stress c  due to the 
beam’s own weight.

(b)	If  the width 1b  is doubled, what happens to the 
stresses?

(c)	 If  the height h is doubled, what happens to the 
stresses?

Problem 5.5-19

A B

5.0 ft 3.0 ft

22.5 lb/ft

z

y

C

0.617 in.

250 lb

2.269 in.

Problem 5.5-20

b2

b1
q

L

hC

5.5-21  A cantilever beam, a C12 3 30 section, is 
subjected to its own weight and a point load at B. 
Find the maximum permissible value of load P at B 
(kips) if the allowable stress in tension and compres-
sion is 18 ksia 5 .

Problem 5.5-21

A x

x

B

9 ft

12 in.

0.51 in. 3.17 in.
0.501 in.

Section x-x

q = 30 lb/ft

P

z

y

o

A
B

C

a = 12 ft

q = 200 lb/ft

z

y

C

0.787 in.

2.613 in.

b = 6 ft

Problem 5.5-23

Problem 5.5-22

L

CB

A
t

a0 = acceleration

5.5-23  A beam ABC with an overhang from B to 
C supports a uniform load of 200 lb/ft throughout its 
length (see figure). The beam is a channel section with 
dimensions as shown in the figure. The moment of iner-
tia about the z axis (the neutral axis) equals 8.13 in4.

(a)	Calculate the maximum tensile stress t  and 
maximum compressive stress c  due to the 
uniform load.

(b)	Find the required span length a that results in 
the ratio of larger to smaller compressive stress 
being equal to the ratio of larger to smaller ten-
sile stress for the beam. Assume that the total 
length 18 ftL a b5 1 5  remains unchanged.

5.5-24  A cantilever beam AB with a rectangular 
cross section has a longitudinal hole drilled through-
out its length (see figure). The beam supports a load 

600 NP 5 . The cross section is 25 mm wide and  
50 mm high, and the hole has a diameter of 10 mm.
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(12 ksi) stresses are reached simultaneously for 
the beam. Use the beam cross section in part (a) 
(see figure) and assume that 1L , 2L , and 3L  are 
unchanged.

Find the bending stresses at the top of the beam, 
at the top of the hole, and at the bottom of the beam.

Problem 5.5-24

50 mm
12.5 mm

25 mm

10 mm

A B

P = 600 N

L = 0.4 m

37.5 mm

5.5-25  A beam with a T-section is supported and 
loaded as shown in the figure. The cross section has 
width 2 1/2 in.b 5 , height 3 in.h 5 , and thickness 

3/8 in.t 5

(a)	Determine the maximum tensile and compres-
sive stresses in the beam.

(b)	If  the allowable stresses in tension and compres-
sion are 18 ksi and 12 ksi, respectively, what is 
the required depth h of  the beam? Assume that 
thickness t remains at 3/8 in. and that flange 
width 2.5 in.b 5

(c)	 Find the new values of loads P and q so that the 
allowable tension (18 ksi) and compression  

Problem 5.5-25

q = 110 lb/ft
P = 750 lb

h =
3 in.

b = 2    in.
1—
2

L1 = 3 ft

L3 = 5 ftL2 = 8 ft

t = 3—
8 in.

t = 3—
8 in.

Problem 5.5-26

Each piece is 
a 50 mm ×
150 mm
wood plank
(actual
dimensions) 

C

c1

c2

z

y

B

A

q
1 = 920 N/m

q
2 = 460 N/m

3 m3 m3 m

x
Pin
connection

1.5 m 1.5 m DC

P = 1730 NMA = 600 N.m

(a)

(b)

5.5-26  Consider the compound beam with seg-
ments AB and BCD joined by a pin connection 
(moment release) just right of B (see figure part a). 
The beam cross section is a double-T made up from 
three 50 mm 150 mm3  wood members (actual 
dimensions, see figure part b).

(a)	Find the centroid C of  the double-T cross 
section ( , )1 2c c ; then compute the moment of 
inertia, [ (mm )4Iz ].

(b)	Find the maximum tensile normal stress t  and 
maximum compressive normal stress c  (kPa) for 
the loading shown. (Ignore the weight of the beam.)
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supported and has a length 4 mL 5 . The top of each 
log is trimmed to form the walking surface (see Fig. b).  
A simplified model of the bridge is shown in Fig. c. 
Each log must carry its own weight 1.2 kN/mw 5  
and the weight ( 850 N)P 5  of a person at mid-span.  
(see Fig. b).

(a)	Determine the maximum tensile and compres-
sive stresses in the beam (Fig. b) due to bending.

(b)	If load w is unchanged, find the maximum per-
missible value of load maxP  if  the allowable nor-
mal stress in tension and compression is 2.5 MPa.

5.5-29  A steel post ( 30 10 psi)6E 5 3  having 
thickness 1/8 in.t 5  and height 72 in.L 5  supports 

5.5-27  A small dam of a height 6 fth 5  is constructed 
of vertical wood beams AB, as shown in the figure. The 
wood beams, which have a thickness 2.5 in.t 5 , are 
simply supported by horizontal steel beams at A and B.

Construct a graph showing the maximum bending 
stress max  in the wood beams versus the depth d of the 
water above the lower support at B. Plot the stress max  
(psi) as the ordinate and the depth d (ft) as the abscissa. 
Note: The weight density  of water equals 62.4 lb/ft3.

Problem 5.5-27

Wood beam

Wood beam

Steel beam

Steel beam

Side view Top view

B

A

h

d

t

t

5.5-28  A foot bridge on a hiking trail is con-
structed using two timber logs each having a diam-
eter 0.5 md 5  (see figure a). The bridge is simply 

Problem 5.5-28

90°

(a)

(b)

(c)
Section x–x

A

L 

B
x

x

P

w

r

Problem 5.5-29

s

L

A A

Elevation
view of post

z

y

Stop sign

Circular cut-out, d = 0.375 in.
Post, t = 0.125 in.

Wind load

Section A–A

C

0.5 in.

5/8 in.

1.5 in.

0.5 in.1.0 in. 1.0 in.

c2

c1

Numerical properties of post

A = 0.578 in.2, c1 = 0.769 in., c2 = 0.731 in.,
Iy = 0.44867 in.4, Iz = 0.16101 in.4

A
sc

en
t X

m
ed
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 / 
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y 
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size for the beam from the table in Appendix G. The 
allowable bending stress is 1800 psi and the wood 
weighs 35 lb/ft3.

a stop sign (see figure), where 12.5 in.s 5  The height 
of the post L is measured from the base to the cen-
troid of the sign. The stop sign is subjected to wind 
pressure 20 lb/ft2p 5  normal to its surface. Assume 
that the post is fixed at its base.

(a)	What is the resultant load on the sign?  
(See Appendix E, Case 25, for properties  
of an octagon, 8n 5 .)

(b)	What is the maximum bending stress max  in the 
post?

(c)	 Repeat part (b) if  the circular cut-outs are elimi-
nated over the height of the post.

5.5-30  Beam ABCDE has a moment release just 
right of joint B and has concentrated moment loads 
at D and E. In addition, a cable with tension P is 
attached at F and runs over a pulley at C (Fig. a). The 
beam is constructed using two steel plates, which are 
welded to form a T cross section (see Fig. b). Consider 
flexural stresses only. Find the maximum permissible 
value of load variable P if the allowable bending stress 
is 130 MPa. Ignore the self-weight of the frame mem-
bers and let length variable 0.75 mL 5 .

Problem 5.5-30

A

x

B

2PL

4L 4L 4L 4L

3L 8PL

C

F

P

D E

Ay
Dy Ey

Ax

Moment
release

(just right of B)

18 mm × 150 mm

(a)

(b)

12 mm × 100 mm

Cable

Pulley

5.6 Design of Beams for Bending Stresses
Introductory Problems
5.6-1  A simply supported wood beam having a 
span length 12 ftL 5  is subjected to unsymmetrical 
point loads, as shown in the figure. Select a suitable 

4 ft

4 ft

4 ft

P1 = 2.5 kips

P2 = 3.2 kips

Problem 5.6-1

5.6-2  A simply supported beam ( 4.5 m)L 5  must 
support mechanical equipment represented as a dis-
tributed load with intensity 30 kN/mq 5  acting over 
the middle segment of the beam (see figure). Select 
the most economical W-shape steel beam from Table 
F-1(b) to support the loads. Consider both the dis-
tributed force q and the weight of the beam. Use an 
allowable bending stress of 140 MPa.

Problem 5.6-2

A B

q

L—
3

L—
3

L—
3

5.6-3  The cross section of a narrow-gage railway 
bridge is shown in part a of the figure. The bridge is 
constructed with longitudinal steel girders that sup-
port the wood cross ties. The girders are restrained 
against lateral buckling by diagonal bracing, as indi-
cated by the dashed lines.

The spacing of the girders is 50 in.1s 5  and the 
spacing of the rails is 30 in.2s 5  The load transmit-
ted by each rail to a single tie is 1500 lbP 5 . The 
cross section of a tie, shown in part b of the figure, 
has a width 5.0 in.b 5  and depth d.

Determine the minimum value of d based upon 
an allowable bending stress of 1125 psi in the wood 
tie. (Disregard the weight of the tie itself.)
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Representative Problems
5.6-5  A cantilever beam AB is loaded by a uniform 
load q and a concentrated load P, as shown in the 
figure.

(a)	Select the most economical steel C shape from 
Table F-3(a) in Appendix F; use 20 lb/ftq 5  and 

300 lbP 5  (assume allowable normal stress is 
18 ksia 5 ).

(b)	Select the most economical steel S shape from 
Table F-2(a) in Appendix F; use 45 lb/ftq 5  and 

2000 lbP 5  (assume allowable normal stress is 
20 ksia 5 ).

(c)	 Select the most economical steel W shape from 
Table F-1(a) in Appendix F; use 45 lb/ftq 5  and 

2000 lbP 5  (assume allowable normal stress is 
20 ksia 5 ). However, assume that the design 

requires that the W shape must be used in weak 
axis bending, i.e., it must bend about the 2–2  
(or y) axis of the cross section.

Note: For parts (a), (b), and (c), revise your initial 
beam selection as needed to include the distributed 
weight of the beam in addition to uniform load q.

5.6-4  A fiberglass bracket ABCD with a solid cir-
cular cross section has the shape and dimensions 
shown in the figure. A vertical load 40 NP 5  acts 
at the free end D.

(a)	Determine the minimum permissible diameter 

mind  of  the bracket if  the allowable bending 
stress in the material is 30 MPa and 37 mmb 5 .  
Note: Disregard the weight of the bracket itself.

(b)	If 10 mmd 5 , 37 mmb 5 , and 30 MPaallow 5 , 
what is the maximum value of load P if vertical 
load P at D is replaced with horizontal loads P at 
B and D (see figure part b)?

Problem 5.6-4

6b

(a)

2b

A B

D C

P 2b

6b

(b)

A B

D C
P

P

2b

2b

Problem 5.6-3

s1

d

s2
P P

Wood 
tie

Steel
girder

Steel rail

(a)

(b)

b

4 ft

q

A B

P

6 ft

Problem 5.6-5

5.6-6  A simple beam of length 5 mL 5  carries a 
uniform load of intensity 5.8 kN/mq 5  and a con-
centrated load 22.5 kN (see figure).

(a)	Assuming 110 MPaallow 5 , calculate the 
required section modulus S. Then select 
the most economical wide-flange beam (W 
shape) from Table F-1(b) in Appendix F, and 

Problem 5.6-6

L = 5 m

q = 5.8 kN/m

P = 22.5 kN 1.5 m
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long and that the balks are simply supported with a 
span of 3.0 m. The allowable bending stress in the 
wood is 15 MPa.

(a)	If  the balks have a square cross section, what is 
their minimum required width minb ?

(b)	Repeat part (a) if  the balk width is 1.5 b and 
the balk depth is b; compare the cross-sectional 
areas of the two designs.

5.6-9  A floor system in a small building consists 
of wood planks supported by 2-in. (nominal width) 
joists spaced at distance s and measured from cen-
ter to center (see figure). The span length L of each 
joist is 12 ft, the spacing s of the joists is 16 in., and 
the allowable bending stress in the wood is 1250 psi. 
The uniform floor load is 120 lb/ft2, which includes 
an allowance for the weight of the floor system itself.

(a)	Calculate the required section modulus S for the 
joists, and then select a suitable joist size (sur-
faced lumber) from Appendix G, assuming that 
each joist may be represented as a simple beam 
carrying a uniform load.

(b)	What is the maximum floor load that can be 
applied to your final beam selection in part (a)?

recalculate S, taking into account the weight of 
the beam. Select a new beam if  necessary.

(b)	Repeat part (a), but now assume that the design 
requires that the W shape must be used in weak 
axis bending (i.e., it must bend about the 2–2  
(or y) axis of the cross section).

5.6-7  A simple beam AB is loaded as shown in the 
figure.

(a)	Calculate the required section modulus S if  
18,000 psiallow 5 , 32 ftL 5 , 2900 lbP 5 , 

and 450 lb/ftq 5 . Then select a suitable I-beam 
(S shape) from Table F-2(a), Appendix F, and 
recalculate S taking into account the weight of 
the beam. Select a new beam size if  necessary.

(b)	What is the maximum load P that can be 
applied to your final beam selection in part (a)?

Problem 5.6-7

A B

Pq q

L
4
— L

4
— L

4
— L

4
—

5.6-8  A pontoon bridge (see figure) is constructed 
of two longitudinal wood beams, known as balks, 
that span between adjacent pontoons and support 
the transverse floor beams, which are called chesses. 
For purposes of design, assume that a uniform floor 
load of 7.5 kPa acts over the chesses. (This load 
includes an allowance for the weights of the chesses 
and balks.) Also, assume that the chesses are 2.5 m 

Problem 5.6-8

Chess

Pontoon

Balk

Problems 5.6-9 and 5.6-10

Joists

Planks

s

s

s

L

5.6-10  The wood joists supporting a plank floor 
(see figure) are 38 mm 220 mm3  in cross sec-
tion (actual dimensions) and have a span length of 

4.0 mL 5 . The floor load is 5.0 kPa, which includes 
the weight of the joists and the floor.

(a)	Calculate the maximum permissible spacing s of  
the joists if the allowable bending stress is  
14 MPa. (Assume that each joist may be repre-
sented as a simple beam carrying a uniform load.)

(b)	If  spacing 406 mms 5 , what is the required 
depth h of  the joist? Assume all other variables 
remain unchanged.
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load transmitted to the beam from the front axle is  
2200 lb and from the rear axle is 3800 lb. The weight 
of the beam itself may be disregarded.

(a)	Determine the minimum required section mod-
ulus S for the beam if  the allowable bending 
stress is 17.0 ksi, the length of the beam is 18 ft, 
and the wheelbase of the carriage is 5 ft.

(b)	Select the most economical I-beam (S shape) 
from Table F-2(a), Appendix F.

5.6-11  A beam ABC with an overhang from B to 
C is constructed of a C 10 303  channel section with 
flanges facing upward (see figure). The beam sup-
ports its own weight (30 lb/ft) plus a triangular load 
of maximum intensity 0q  acting on the overhang. The 
allowable stresses in tension and compression are  
18 ksi and 12 ksi, respectively.

(a)	Determine the allowable triangular load inten-
sity 0,allowq  if  the distance L equals 4 ft.

(b)	What is the allowable triangular load intensity 

0,allowq  if  the beam is rotated 1808 about its lon-
gitudinal centroidal axis so that the flanges are 
downward?

q
0

A B C

C
0.649 in.
2.381 in.3.03 in.

10.0 in.

L L

Problem 5.6-11

5.6-12  A “trapeze bar” in a hospital room provides 
a means for patients to exercise while in bed (see fig-
ure). The bar is 2.1 m long and has a cross section in 
the shape of a regular octagon. The design load is 
1.2 kN applied at the midpoint of the bar, and the 
allowable bending stress is 200 MPa.

Determine the minimum height h of the bar. 
(Assume that the ends of the bar are simply sup-
ported and that the weight of the bar is negligible.)

Problem 5.6-12

h
C

5.6-13  A two-axle carriage that is part of an over-
head traveling crane in a testing laboratory moves 
slowly across a simple beam AB (see figure). The 

Problem 5.6-13

5 ft

18 ft

3800 lb 2200 lb

A B

5.6-14  A cantilever beam AB with a circular cross 
section and length 750 mmL 5  supports a load 

800 NP 5  acting at the free end (see figure). The 
beam is made of steel with an allowable bending 
stress of 120 MPa.

(a)	Determine the required diameter mind  (figure 
part a) of the beam, considering the effect of the 
beam’s own weight.

(b)	Repeat part (a) if  the beam is hollow with wall 
thickness /8t d5  (figure part b); compare the 
cross-sectional areas of the two designs.

Problem 5.6-14

L

A
B

P

d

d

d
t =

8

(a)
(b)

5.6-15  A propped cantilever beam ABC (see figure) 
has a shear release just right of the mid-span.

(a)	Select the most economical wood beam from the 
table in Appendix G; assume 55 lb/ftq 5 ,  

16 ftL 5 , 1750 psiaw 5 , and 375 psiaw 5 .  
Include the self-weight of the beam in your 
design.
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5.6-18  A beam having a cross section in the form 
of a channel (see figure) is subjected to a bending 
moment acting about the z axis.

Calculate the thickness t of the channel in order 
that the bending stresses at the top and bottom of the 
beam will be in the ratio 7:3, respectively.

(b)	If  a C 10 253  steel beam is now used for beam 
ABC, what is the maximum permissible value 
of load variable q? Assume 16 ksias 5  and 

10 ft.L 5  Include the self-weight of the beam in 
your analysis.

5.6-16  A small balcony constructed of wood is 
supported by three identical cantilever beams (see 
figure). Each beam has length 2.1 m1L 5 , width b, 
and height 4 /3h b5 . The dimensions of the balcony 
f loor are 1 2L L3 , where 2.5 m2L 5 . The design 
load is 5.5 kPa acting over the entire f loor area. 
(This load accounts for all loads except the weights 
of the cantilever beams, which have a weight density 

5.5 kN/m3 5 .) The allowable bending stress in the 
cantilevers is 15 MPa.

Assuming that the middle cantilever supports 
50% of the load and each outer cantilever supports 
25% of the load, determine the required dimensions b  
and h.

1.5 in.
1.25 in.

1.5 in.

z

b

y

C

16 in.

12 in.

Problem 5.6-17

Problem 5.6-16

4b—
3

h =

L2 L1 b

5.6-17  A beam having a cross section in the form 
of an unsymmetric wide-flange shape (see figure) is 
subjected to a negative bending moment acting about 
the z axis.

Determine the width b of the top flange in order 
that the stresses at the top and bottom of the beam 
will be in the ratio 4:3, respectively.

Problem 5.6-15

L L / 2L / 2

B
C

A

q P = qL

Shear release

Problem 5.6-18

z

y

C 55 mm

tt

t

152 mm

5.6-19  Determine the ratios of the weights of four 
beams that have the same length, are made of the 
same material, are subjected to the same maximum 
bending moment, and have the same maximum bend-
ing stress if their cross sections are (1) a rectangle 
with height equal to twice the width, (2) a square,  
(3) a circle, and (4) a pipe with outer diameter d and 
wall thickness /8t d5  (see figures).

Problem 5.6-19

b

h = 2b

a

a

d d

dt =
8

Part 1 Part 2 Part 3 Part 4
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5.6-22  A steel beam ABC is simply supported at A 
and B and has an overhang BC of length 150 mmL 5  
(see figure). The beam supports a uniform load of 
intensity 4.0 kN/mq 5  over its entire span AB and 
1.5q over BC. The cross section of the beam is rect-
angular with width b and height 2b. The allowable 
bending stress in the steel is 60 MPaallow 5 , and its 
weight density is 77.0 kN/m3 5 .

(a)	 Disregarding the weight of the beam, calculate the 
required width b of the rectangular cross section.

(b)	Taking into account the weight of the beam, 
calculate the required width b.

5.6-20  A horizontal shelf AD of length 1215 mmL 5 ,  
width 305 mmb 5 , and thickness 22 mmt 5  is sup-
ported by brackets at B and C (see part a of the fig-
ure). The brackets are adjustable and may be placed 
in any desired positions between the ends of the shelf. 
A uniform load of intensity q, which includes the 
weight of the shelf itself, acts on the shelf (see part b  
of the figure).

(a)	Determine the maximum permissible value of 
the load q if  the allowable bending stress in the 
shelf  is 8.5 MPaallow 5  and the position of the 
supports is adjusted for maximum load carrying 
capacity.

(b)	The bookshelf  owner decides to reinforce the 
shelf  with a bottom wood plate /2 /2b t3  along 
its entire length (see figure part c). Find the new 
maximum permissible value of the load q if  the 
allowable bending stress in the shelf  remains at 

8.5 MPaallow 5 .

Problem 5.6-20

c1
c2

b/4

b × t

b/2 × t/2

(c)

t

B
A

C
D

(a)

(b)

A
B C

D

q

L

L
b

5.6-21  A steel plate (called a cover plate) having 
cross-sectional dimensions 6.0 in. 0.5 in.3  is welded 
along the full length of the bottom flange of a W 12 ×  
50 wide-flange beam (see figure, which shows the 
beam cross section).

What is the percent increase in the smaller section 
modulus (as compared to the wide-flange beam alone)?

6.0 × 0.5 in. cover plate

W 12 × 50

Problem 5.6-21

A
B

C

b

2b

q
1.5 q

2L L

Problem 5.6-22

5.6-23  A retaining wall 6 ft high is constructed of 
horizontal wood planks 2.5 in. thick (actual dimen-
sion) that are supported by vertical wood piles of a 
12 in. diameter (actual dimension), as shown in the 
figure. The lateral earth pressure is 125 lb/ft1

2p 5  at 
the top of the wall and 425 lb/ft2

2p 5  at the bottom.

(a)	Assuming that the allowable stress in the wood 
is 1175 psi, calculate the maximum permissible 
spacing s of  the piles.

(b)	Find the required diameter of the wood piles 
so that piles and planks ( 2.5 in.)t 5  reach the 
allowable stress at the same time.

Hint: Observe that the spacing of the piles may be 
governed by the load-carrying capacity of either the 
planks or the piles. Consider the piles to act as canti-
lever beams subjected to a trapezoidal distribution of 
load, and consider the planks to act as simple beams 
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soil pressure with peak intensity 0q  (Figs. b and c).  
The tensile and compressive strength of the beam is 
600 MPa. Select the most economical W 360 section 
from Table F-1(b) based on safety factor of 3.0.

5.6-25  A beam of square cross section ( lengtha 5  
of each side) is bent in the plane of a diagonal (see 
figure). By removing a small amount of material at 
the top and bottom corners, as shown by the shaded 
triangles in the figure, you can increase the section 
modulus and obtain a stronger beam, even though 
the area of the cross section is reduced.

(a)	Determine the ratio b  defining the areas that 
should be removed in order to obtain the stron-
gest cross section in bending.

(b)	By what percent is the section modulus increased 
when the areas are removed?

between the piles. To be on the safe side, assume that 
the pressure on the bottom plank is uniform and 
equal to the maximum pressure.

2.5 in.

s
6 ft

Top view

Side view

2.5 in.

12-in.
diam.

12-in.
diam.

p1 = 125 lb/ft2

p2 = 425 lb/ft2

Problem 5.6-23

5.6-24  A retaining wall (Fig. a) is constructed 
using steel W-shape columns and concrete panel 
infill (Fig. b). Each column is subjected to lateral 

Problem 5.6-25

a

a

Cz

y

ba

ba

5.6-26  The cross section of a rectangular beam having 
a width b and height h is shown in part a of the figure. 
For reasons unknown to the beam designer, it is planned 
to add structural projections of width b/9 and height d to 
the top and bottom of the beam (see part b of the figure).

For what values of d is the bending-moment 
capacity of the beam increased? For what values is 
it decreased?

Problem 5.6-26

h

b—
9

b—
9

d

d

h

(a) (b)

b

Problem 5.6-24

Concrete

Steel pile

(a)

(b)

(c)

4 m

q0 = 80 kN/m

Th
e 

Li
ne

 C
re

ek
 L

ou
dm

ou
th
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(b)	Repeat part (a) if  concentrated load P is applied 
upward at A and downward uniform load 
( ) 2 /q x P L5  is applied over the entire beam as 

shown in the figure part b. What is the ratio of 
the maximum stress to the stress at the location 
of maximum moment?

5.7 Nonprismatic Beams
Introductory Problems
5.7-1  A tapered cantilever beam AB of length L has 
square cross sections and supports a concentrated 
load P at the free end (see figure part a). The width 
and height of the beam vary linearly from hA at the 
free end to hB  at the fixed end.

Determine the distance x from the free end A to the 
cross section of maximum bending stress if 3h hB A5 .

(a)	What is the magnitude max  of  the maximum 
bending stress? What is the ratio of the maxi-
mum stress to the largest stress B at the support?

(b)	Repeat part (a) if  load P is now applied as a uni-
form load of intensity /q P L5  over the entire 
beam, A is restrained by a roller support, and  
B is a sliding support (see figure part b).

Problem 5.7-2

Wind
load

P = 2.4 kN

A
B

x

t = 10.0 mm

dA = 90 mm dB = 270 mm

L = 8.0 m

(a)

2P
L
—q(x) =

A
B

x

t

d

L = 8.0 m

P

(b)

Problem 5.7-1

BA

(a)

A
hA

hB

x
P

L

(b)

Sliding
support

L

q = P/L

B

x

5.7-2  A tall signboard is supported by two verti-
cal beams consisting of thin-walled, tapered circular 
tubes (see figure part a). For purposes of this anal-
ysis, each beam may be represented as a cantilever 
AB of length 8.0 mL 5  subjected to a lateral load 

2.4 kNP 5  at the free end. The tubes have a con-
stant thickness 10.0 mmt 5  and average diameters 

90 mmdA 5  and 270 mmdB 5  at ends A and B, 
respectively.

Because the thickness is small compared to the 
diameters, the moment of inertia at any cross sec-
tion may be obtained from the formula /83I d tp5  
(see Case 22, Appendix E); therefore, the sec-
tion modulus may be obtained from the formula 

/42S d tp5 .

(a)	At what distance x from the free end does the 
maximum bending stress occur? What is the 
magnitude max  of  the maximum bending 
stress? What is the ratio of the maximum stress 
to the largest stress B  at the support?

Representative Problems
5.7-3  A tapered cantilever beam AB with rectangu-
lar cross sections is subjected to a concentrated load 

50 lbP 5  and a couple 800 lb-in.0M 5  acting at the 
free end (see figure part a). The width b of the beam is 
constant and equal to 1.0 in., but the height varies lin-
early from 2.0 in.hA 5  at the loaded end to 3.0hB 5  in.  
at the support.

(a)	At what distance x from the free end does the 
maximum bending stress max  occur? What is 
the magnitude max  of  the maximum bending 
stress? What is the ratio of the maximum stress 
to the largest stress B  at the support?
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5.7-5  Refer to the tapered cantilever beam of solid 
circular cross section shown in Fig. 5-26 of Example 5-9.

(a)	Considering only the bending stresses due to 
the load P, determine the range of values of 
the ratio /d dB A for which the maximum normal 
stress occurs at the support.

(b)	 What is the maximum stress for this range of values?

Fully Stressed Beams
Problems 5.7-6 to 5.7-8 pertain to fully stressed beams 
of rectangular cross section. Consider only the bending 
stresses obtained from the flexure formula and disregard 
the weights of the beams.

5.7-6  A cantilever beam AB with rectangular cross 
sections of a constant width b and varying height hx is 
subjected to a uniform load of intensity q (see figure).

How should the height hx vary as a function of x 
(measured from the free end of the beam) in order to 
have a fully stressed beam? (Express hx in terms of 
the height hB  at the fixed end of the beam.)

(b)	Repeat part a if, in addition to P and 0M , a 
triangular distributed load with peak intensity 

3 /0q P L5  acts upward over the entire beam as 
shown in the figure part b. What is the ratio of 
the maximum stress to the stress at the location 
of maximum moment?

(a)

hA = 
2.0 in.

hB = 
3.0 in.

BA

b = 1.0 in. b = 1.0 in.

x

P = 50 lb

M0 = 800 lb-in.

L = 20 in.

(b)

BA

x

P = 50 lb

M0 = 800 lb-in.

L = 20 in.

3P
L
—q0 =

Problem 5.7-3

5.7-4  The spokes in a large flywheel are modeled as 
beams fixed at one end and loaded by a force P and a 
couple 0M  at the other (see figure). The cross sections 
of the spokes are elliptical with major and minor axes 
(height and width, respectively) having the lengths 
shown in the figure part a. The cross-sectional 
dimensions vary linearly from end A to end B.

Considering only the effects of bending due to the 
loads P and 0M , determine the following quantities.

(a)	The largest bending stress A  at end A.
(b)	The largest bending stress B  at end B.
(c)	 The distance x to the cross section of maximum 

bending stress.
(d)	The magnitude max  of  the maximum bending 

stress.
(e)	 Repeat part d if  a uniform load ( ) 10 /3q x P L5  

is added to loadings P and 0M , as shown in the 
figure part b.

Problem 5.7-4

(b)

(a)

x

A

P = 12 kN
BM0 = 10 kN.m

hB = 120 mmhA = 90 mm

bB = 80 mm

bA = 60 mm

L = 1.25 m

x
A

P

B

M0

L = 1.25 m

10P
3L
—q(x) =
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5.8 Shear Stresses in Beams  
of Rectangular Cross Section
Introductory Problems
5.8-1  The shear stresses   in a rectangular beam are 
given by Eq. (5-43):

V
I

h
y





2 4

2

1
2 5 2

in which V is the shear force, I is the moment of inertia 
of the cross-sectional area, h is the height of the beam, 
and 1y  is the distance from the neutral axis to the point 
where the shear stress is being determined (Fig. 5-32).

By integrating over the cross-sectional area, show 
that the resultant of the shear stresses is equal to the 
shear force V.

5.8-2  Calculate the maximum shear stress max  and 
the maximum bending stress max  in a wood beam 

5.7-7  A simple beam ABC having rectangular cross 
sections with constant height h and varying width bx  
supports a concentrated load P acting at the mid-
point (see figure).

How should the width bx  vary as a function of x 
in order to have a fully stressed beam? (Express bx  in 
terms of the width bB at the midpoint of the beam.)

Problem 5.7-8

x

hB

hB

hx

bB

bx

q

hxA

B

L 

Problem 5.7-6

x

hBhx

hBhx

A
B

b
b

q

L 

Problem 5.7-7

A B

P

x

C
h

h

bx

h

bB

L
2
— L

2
—

5.7-8  A cantilever beam AB having rectangular 
cross sections with varying width bx  and varying 
height hx is subjected to a uniform load of inten-
sity q (see figure). If the width varies linearly with x 
according to the equation /b b x Lx B5 , how should 
the height hx vary as a function of x in order to have 
a fully stressed beam? (Express hx in terms of the 
height hB  at the fixed end of the beam.) Problem 5.8-2

(a)

1.95 m

22.5 kN/m

300 mm

150 mm

(b)

1.95 m

22.5 kN/m
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maximum permissible value q if the allowable bend-
ing stress is all 5 11 MPa, and the allowable shear 
stress is all 5 1.2 MPa.

5.8-5  Two wood beams, each of rectangular cross 
section (3.0 in. 4.0 in.3 , actual dimensions), are 
glued together to form a solid beam with dimensions 
6.0 in. 4.0 in.3  (see figure). The beam is simply sup-
ported with a span of 8 ft.

(a)	What is the maximum moment maxM  that may 
be applied at the left support if  the allowable 
shear stress in the glued joint is 200 psi? (Include 
the effects of the beam’s own weight, assuming 
that the wood weighs 35 lb/ft3.)

(b)	Repeat part (a) if  maxM  is based on allowable 
bending stress of 2500 psi.

(see figure) carrying a uniform load of 22.5 kN/m 
(which includes the weight of the beam) if the length is 
1.95 m and the cross section is rectangular with width 
150 mm and height 300 mm, and the beam is either  
(a) simply supported as in the figure part a, or b has a 
sliding support at right as in the figure part b.

5.8-3  A simply supported wood beam is subjected to 
uniformly distributed load q. The width of the beam is  
6 in. and the height is 8 in. Determine the normal stress 
and the shear stress at point C. Show these stresses on 
a sketch of a stress element at point C.

Problem 5.8-4

3 m 1 m

A

z

y

o

q

200 mm

250 mm

B
C

5.8-4  A simply supported wood beam with over-
hang is subjected to uniformly distributed load q. 
The beam has a rectangular cross section with width 

200 mmb 5  and height 250 mmh 5 . Determine the 

10 ft
3 ft

3 in.

A B

z

y

o

q = 400 lb/ft

C

6 in.

8 in.

Problem 5.8-3

Problem 5.8-5

6.0 in.

4.0 in.

M

8 ft

5.8-6  A cantilever beam of length 2 mL 5  sup-
ports a load 8.0 kNP 5  (see figure). The beam 
is made of wood with cross-sectional dimensions 
120 mm 200 mm3 .

Calculate the shear stresses due to the load P at 
points located 25 mm, 50 mm, 75 mm, and 100 mm 
from the top surface of the beam. From these results, 
plot a graph showing the distribution of shear stresses 
from top to bottom of the beam.

5.8-7  A steel beam of length 16 in.L 5  and cross- 
sectional dimensions 0.6 in.b 5  and 2 in.h 5  (see  
f igure) supports a uniform load of intensity 

240 lb/in.q 5 , which includes the weight of the beam.
Calculate the shear stresses in the beam (at the 

cross section of maximum shear force) at points 

Problem 5.8-6

200 mm

120 mm
L = 2 m

P = 8.0 kN
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(b)	Repeat part (a) if  the beam is assembled by 
gluing together two 3 in. 4 in.3  boards and a 
2 in. 4 in.3  board (see figure part c).

5.8-10  A laminated plastic beam of square cross 
section is built up by gluing together three strips, 
each 10 mm 30 mm3  in cross section (see figure). 
The beam has a total weight of 3.6 N and is simply 
supported with span length 360 mmL 5 .

Considering the weight of the beam (q), calculate 
the maximum permissible CCW moment M that may 
be placed at the right support.

(a)	The allowable shear stress in the glued joints is 
0.3 MPa.

(b)	The allowable bending stress in the plastic is  
8 MPa.

located 1/4 in., 1/2 in., 3/4 in., and 1 in. from the top 
surface of the beam. From these calculations, plot a 
graph showing the distribution of shear stresses from 
top to bottom of the beam.

Problem 5.8-7

q = 240 lb/in.

b = 0.6 in. 

h = 2 in.

L = 16 in.

Representative Problems
5.8-8  A beam of rectangular cross section (width b 
and height h) supports a uniformly distributed load 
along its entire length L. The allowable stresses in 
bending and shear are allow  and allow , respectively.

(a)	If  the beam is simply supported, what is the 
span length 0L  below which the shear stress 
governs the allowable load and above which the 
bending stress governs?

(b)	If  the beam is supported as a cantilever, what 
is the length 0L  below which the shear stress 
governs the allowable load and above which the 
bending stress governs?

5.8-9  A laminated wood beam on simple sup-
ports (figure part a) is built up by gluing together four 
2 in. 4 in.3  boards (actual dimensions) to form a solid 
beam 4 in. 8 in.3  in cross section, as shown in the fig-
ure part b. The allowable shear stress in the glued joints 
is 62 psi, the allowable shear stress in the wood is 175 psi, 
and the allowable bending stress in the wood is 1650 psi.

(a)	If  the beam is 12 ft long, what is the allowable 
load P acting at the one-third point along the 
beam, as shown? (Include the effects of the 
beam’s own weight, assuming that the wood 
weighs 35 lb/ft3.)

Problem 5.8-9

L

L/3

(a)
(b) (c)

2 in.

2 in.

2 in.

2 in.

3 in.

2 in.

3 in.

4 in. 4 in.

P

5.8-11  A wood beam AB on simple supports with span 
length equal to 10 ft is subjected to a uniform load of 
intensity 125 lb/ft acting along the entire length of the 
beam, a concentrated load of magnitude 7500 lb acting at 
a point 3 ft from the right-hand support, and a moment 
at A of 18,500 ft-lb (see figure). The allowable stresses in 
bending and shear, respectively, are 2250 psi and 160 psi.

(a)	From the table in Appendix G, select the lightest 
beam that will support the loads (disregard the 
weight of the beam).

(b)	Taking into account the weight of the beam 
(weight density 35 lb/ft )35 , verify that the 
selected beam is satisfactory, or if  it is not, select 
a new beam.

Problem 5.8-10

M

30 mm

30 mm

10 mm
10 mm
10 mm

q

L

Problem 5.8-11

A B

7500 lb18,500 ft-lb
125 lb/ft

10 ft

3 ft
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are uniformly distributed over the top surfaces of the 
supporting beams.

(a)	Determine the allowable platform load 
(lb/ft )1

2w  based upon the bending stress in the 
planks.

(b)	Determine the allowable platform load 
(lb/ft )2

2w  based upon the shear stress in the 
planks.

(c)	 Which of the preceding values becomes the 
allowable load alloww  on the platform?

Hints: Use care in constructing the loading dia-
gram for the planks, noting especially that the reac-
tions are distributed loads instead of concentrated 
loads. Also, note that the maximum shear forces 
occur at the inside faces of the supporting beams.

5.8-14  A wood beam ABC with simple supports at 
A and B and an overhang BC has height 300 mmh 5  
(see figure). The length of the main span of the 
beam is 3.6 mL 5  and the length of the overhang 
is /3 1.2 mL 5 . The beam supports a concentrated 
load 3 18 kNP 5  at the midpoint of the main span 
and a moment /2 10.8 kN mPL 5 ?  at the free end 
of the overhang. The wood has a weight density 

5.5 kN/m3 5 .

(a)	Determine the required width b of  the beam 
based upon an allowable bending stress of  
8.2 MPa.

(b)	Determine the required width based upon an 
allowable shear stress of 0.7 MPa.

5.8-12  A simply supported wood beam of rectan-
gular cross section and span length 1.2 m carries a 
concentrated load P at midspan in addition to its 
own weight (see figure). The cross section has width  
140 mm and height 240 mm. The weight density of 
the wood is 5.4 kN/m3.

Calculate the maximum permissible value of the 
load P if (a) the allowable bending stress is 8.5 MPa 
and (b) the allowable shear stress is 0.8 MPa.

Problem 5.8-12

0.6 m 0.6 m

P

140 mm

240 mm

5.8-13  A square wood platform is 8 ft 8 ft3  in area 
and rests on masonry walls (see figure). The deck of 
the platform is constructed of 2-in. nominal thick-
ness tongue-and-groove planks (actual thickness 
1.5 in.; see Appendix G) supported on two 8-ft long 
beams. The beams have 4 in. 6 in.3  nominal dimen-
sions (actual dimensions 3.5 in. 5.5 in.3 ).

The planks are designed to support a uniformly 
distributed load (lb/ft )2w  acting over the entire top 
surface of the platform. The allowable bending stress 
for the planks is 2400 psi and the allowable shear 
stress is 100 psi. When analyzing the planks, disre-
gard their weights and assume that their reactions 

Problem 5.8-13

8 ft
8 ft

Problem 5.8-14

A CB

b

h =
300 mm

3P

L

L
2
—

L
3
—

M =
PL
2

–––

5.9 Shear Stresses in Beams of Circular 
Cross Section
Introductory Problems
5.9-1  A wood pole with a solid circular cross section 
( diameter)d 5  is subjected to a triangular distrib-
uted horizontal force of peak intensity 20 lb/in.0q 5  
(see figure). The length of the pole is 6 ftL 5 , and the 
allowable stresses in the wood are 1900 psi in bending 
and 120 psi in shear.
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Representative Problems
5.9-3  A vertical pole consisting of a circular tube 
of outer diameter 5 in. and inner diameter 4.5 in. is 
loaded by a linearly varying distributed force with 
maximum intensity of 0q . Find the maximum shear 
stress in the pole.

Determine the minimum required diameter of the 
pole based upon (a) the allowable bending stress, and 
(b) the allowable shear stress.

Problem 5.9-1

L
d

d

q0 = 20 lb/in.

5.9-2  A simple log bridge in a remote area consists 
of two parallel logs with planks across them (see fig-
ure). The logs are Douglas fir with an average diam-
eter 300 mm. A truck moves slowly across the bridge, 
which spans 2.5 m. Assume that the weight of the 
truck is equally distributed between the two logs.

Because the wheelbase of the truck is greater than 
2.5 m, only one set of wheels is on the bridge at a 
time. Thus, the wheel load on one log is equivalent to 
a concentrated load W acting at any position along 
the span. In addition, the weight of one log and the 
planks it supports is equivalent to a uniform load of 
850 N/m acting on the log.

Determine the maximum permissible wheel load W  
based upon (a) an allowable bending stress of 7.0 MPa 
and (b) an allowable shear stress of 0.75 MPa.

Problem 5.9-2

W

2.5 m

x

850 N/m

300 mm

Problem 5.9-4

d0

2 m

q0 = 100 kN/m

Problem 5.9-3

d2

d1

10 ft

q0 = 400 lb/ft

5.9-4  A circular pole is subjected to linearly vary-
ing distributed force with maximum intensity 0q . Cal-
culate the diameter 0d  of the pole if the maximum 
allowable shear stress for the pole is 75 MPa.

5.9-5  A sign for an automobile service station is 
supported by two aluminum poles of hollow circular 
cross section, as shown in the figure. The poles are 
being designed to resist a wind pressure of 75 lb/ft2 
against the full area of the sign. The dimensions 
of the poles and sign are 20 ft1h 5 , 5 ft2h 5 , and 

10 ftb 5 . To prevent buckling of the walls of the 
poles, the thickness t is specified as one-tenth the 
outside diameter d.

(a)	Determine the minimum required diameter 
of the poles based upon an allowable bending 
stress of 7500 psi in the aluminum.
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5.10 Shear Stresses in the Webs  
of Beams with Flanges
Introductory Problems
5.10-1 through 5.10-6 A wide-flange beam (see fig-
ure) is subjected to a shear force V. Using the dimen-
sions of the cross section, calculate the moment of 
inertia and then determine the following quantities:

(a)	The maximum shear stress max  in the web.
(b)	The minimum shear stress min  in the web.
(c)	 The average shear stress aver  (obtained by divid-

ing the shear force by the area of the web) and 
the ratio /max aver  .

(d)	The shear force webV  carried in the web and the 
ratio /webV V .

Note: Disregard the fillets at the junctions of the 
web and flanges and determine all quantities, includ-
ing the moment of inertia, by considering the cross 
section to consist of three rectangles.

(b)	Determine the minimum required diameter 
based upon an allowable shear stress of  
2000 psi.

Problem 5.9-5

d

t = 

b

h2

h1

Wind
load

d
10
—

5.9-6  A steel pipe is subjected to a quadratic dis-
tributed load over its height with the peak intensity 

0q  at the base (see figure). Assume the following pipe 
properties and dimensions: height L, outside diameter 

200 mmd 5 , and wall thickness 10 mmt 5 . Allow-
able stresses for flexure and shear are 125 MPaa 5  
and 30 MPaa 5 .

(a)	If  2.6 mL 5 , find (kN/m)0,maxq , assuming that 
allowable flexure and shear stresses in the pipe 
are not to be exceeded.

(b)	If  60 kN/m0q 5 , find the maximum height 
(m)maxL  of  the pipe if  the allowable flexure 

and shear stresses in the pipe are not to be 
exceeded.

L

q(x) =
q

0
[1–(x/L)2]

q
0

x

Problem 5.9-6

Problems 5.10-1 through 5.10-6

z

t

y

O hh1

b

5.10-1 Dimensions of cross section: 6 in.b 5 , 
0.5 in.t 5 , 12 in.h 5 , 10.5 in.1h 5 , and 30 kV 5 .

5.10-2 Dimensions of cross section: 180 mmb 5 ,  
12 mmt 5 ,  420 mmh 5 ,  380 mm1h 5 ,  a nd 
125 kNV 5 .

5.10-3 Wide-flange shape, W 8 283  (see Table F-1, 
Appendix F); 10 kV 5 .

5.10-4 Dimensions of cross section: 220 mmb 5 ,  
12 mmt 5 ,  600 mmh 5 ,  570 mm1h 5 ,  a nd 
200 kNV 5 .

5.10-5 Wide-flange shape, W 18 713  (see Table F-1, 
Appendix F); 21 kV 5 .

5.10-6 Dimensions of cross section: 120 mmb 5 ,  
7 mmt 5 ,  350 mmh 5 ,  330 mm1h 5 , and V 5 60 kN.
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Select from Table F-2(a), Appendix F, the lightest 
I-beam (S shape) that will support the given loads.

Hint: Select a beam based upon the bending stress 
and then calculate the maximum shear stress. If the 
beam is overstressed in shear, select a heavier beam 
and repeat.

Representative Problems
5.10-7  A cantilever beam AB of length 6.5 ftL 5  sup-
ports a trapezoidal distributed load of peak intensity q, 
and minimum intensity q/2, that includes the weight of 
the beam (see figure). The beam is a steel W 12 143  
wide-flange shape (see Table F-1(a), Appendix F).

Calculate the maximum permissible load q based 
upon (a) an allowable bending stress 18 ksiallow 5   
and (b) an allowable shear stress 7.5 ksiallow 5 .  
Note: Obtain the moment of inertia and section mod-
ulus of the beam from Table F-1(a).

Problem 5.10-7

W 12 × 14A
B

q

L = 6.5 ft

q
2
—

5.10-8  A bridge girder AB on a simple span of 
length 14 mL 5  supports a distributed load of max-
imum intensity q at mid-span and minimum intensity 
q/2 at supports A and B that includes the weight of 
the girder (see figure). The girder is constructed of 
three plates welded to form the cross section shown.

Determine the maximum permissible load q based 
upon (a) an allowable bending stress 110 MPaallow 5  
and (b) an allowable shear stress 50 MPaallow 5 .

Problem 5.10-8

q
2
—q

2
—

A B

L = 14 m

q

450 mm

450 mm

1800 mm
16 mm

32 mm

32 mm

5.10-9  A simple beam with an overhang supports a 
uniform load of intensity 1200 lb/ftq 5  and a concen-
trated 3000 lbP 5  load at 8 ft to the right of A and also 
at C (see figure). The uniform load includes an allow-
ance for the weight of the beam. The allowable stresses 
in bending and shear are 18 ksi and 11 ksi, respectively.

Problem 5.10-9

A
B

C

P = 3000 lb

q = 1200 lb/ft

P = 3000 lb

12 ft 4 ft

8 ft

5.10-10  A hollow steel box beam has the rectan-
gular cross section shown in the figure. Determine 
the maximum allowable shear force V that may act 
on the beam if the allowable shear stress is 36 MPa.

Problem 5.10-10

10 mm

200 mm

20
mm

20
mm

10 mm 450
mm

5.10-11  A hollow aluminum box beam has the 
square cross section shown in the figure. Calculate the 
maximum and minimum shear stresses max  and min  
in the webs of the beam due to a shear force 28 kV 5 .

Problem 5.10-11

1.0 in.

1.0 in.

12 in.
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run continuously for the length of the girder. Each 
weld has an allowable load in shear of 920 kN/m.

Calculate the maximum allowable shear force 

maxV  for the girder.

5.10-12  The T-beam shown in the figure has 
cross-sectional dimensions: 210 mmb 5 , 16 mmt 5 ,  

300 mmh 5 , and 280 mm1h 5 . The beam is sub-
jected to a shear force 68 kNV 5 .

Determine the maximum shear stress max  in the 
web of the beam.

z

y

C
h1 h

c

t

b

Problems 5.10-12 and 5.10-13

5.10-13  Calculate the maximum shear stress max  in 
the web of the T-beam shown in the figure if 10 in.b 5 ,  

0.5 in.t 5 , 7 in.h 5 , 6.2 in.1h 5 , and the shear force 
5300 lbV 5 .

5.11 Built-Up Beams and Shear Flow
Introductory Problems
5.11-1  A prefabricated wood I-beam serving as 
a floor joist has the cross section shown in the fig-
ure. The allowable load in shear for the glued joints 
between the web and the flanges is 65 lb/in. in the 
longitudinal direction.

Determine the maximum allowable shear force 

maxV  for the beam.

Problem 5.11-1

0.75 in.

0.75 in.

0.625 in.
z

y

O 8 in.

5 in.

5.11-2  A welded steel girder having the cross section 
shown in the figure is fabricated of two 3300 mm 25 mm 

3300 mm 25 mm flange plates and a 3800 mm 16 mm web 
plate. The plates are joined by four fillet welds that 

Problem 5.11-2

z

y

O

300 mm

16 mm

25 mm

25 mm

800 mm

5.11-3  A welded steel girder having the cross section 
shown in the figure is fabricated of two 20 in. 1 in.3  
f lange plates and a 60 in. 5/16 in.3  web plate. The 
plates are joined by four longitudinal fillet welds that 
run continuously throughout the length of the girder.

If the girder is subjected to a shear force of  
280 kips, what force F (per inch of length of weld) 
must be resisted by each weld?

Problem 5.11-3

z

y

O

20 in.

in.

1 in.

1 in.

60 in.

5
16
—

5.11-4  A wood box beam is constructed of two 
260 mm 50 mm3  boards and two 260 mm 25 mm3  
boards (see figure). The boards are nailed at a longi-
tudinal spacing 100 mms 5 .

If each nail has an allowable shear force 1200 NF 5 ,  
what is the maximum allowable shear force maxV ?

93347_ch05_hr_445-552.indd   543 10/25/16   5:31 PM



544

(b)	What is the maximum longitudinal spacing sB 
for the nails in beam B?

(c)	 Which beam is more efficient in resisting the 
shear force?

5.11-5  A box beam is constructed of four wood 
boards as shown in the figure part a. The webs are 
8 in. 1 in.3  and the flanges are 6 in. 1 in.3  boards 
(actual dimensions), joined by screws for which the 
allowable load in shear is 250 lbF 5  per screw.

(a)	Calculate the maximum permissible longitudinal 
spacing maxs  of  the screws if  the shear force V is 
1200 lb.

(b)	Repeat part (a) if  the flanges are attached to the 
webs using a horizontal arrangement of  screws as 
shown in the figure part b.

Problem 5.11-7

z

y

O

3 in.

— in.3
16

— in.3
16

8 in.

in.3
4

in.3
4

Problem 5.11-5

(a)

y

6 in.

z O
Web

Flange

1 in.

1 in.

8 in.

1 in. 1 in.

(b)

Web

Flange

1 in.1 in.
6 in.

8 in.

1 in.

1 in.

Problem 5.11-6

z

y

O z

y

O

200 mm

360
mm

360
mm

t =
20 mm

t =
20 mm

A

200 mm

B

Problem 5.11-4

z

y

O
50

 mm

25 mm

25 mm

50
 mm

260 mm

260 mm

Representative Problems
5.11-6  Two wood box beams (beams A and B) have 
the same outside dimensions (200 mm 360 mm)3  
and the same thickness ( 20 mm)t 5  throughout, as 
shown in the figure. Both beams are formed by nail-
ing, with each nail having an allowable shear load 
of 250 N. The beams are designed for a shear force 

3.2 kNV 5 .

(a)	What is the maximum longitudinal spacing sA 
for the nails in beam A?

5.11-7  A hollow wood beam with plywood webs has 
the cross-sectional dimensions shown in the figure. 
The plywood is attached to the flanges by means of 
small nails. Each nail has an allowable load in shear 
of 30 lb.

Find the maximum allowable spacing s of the 
nails at cross sections where the shear force V is equal 
to (a) 200 lb and (b) 300 lb.

5.11-8  A beam of a T cross section is formed by 
nailing together two boards having the dimensions 
shown in the figure.

If the total shear force V acting on the cross sec-
tion is 1500 N and each nail may carry 760 N in shear, 
what is the maximum allowable nail spacing s?
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spacing s in the longitudinal direction if the shear 
force 110 kNV 5  Note: Obtain the dimensions and 
moment of inertia of the W shape from Table F-1(b).

5.11-9  The T-beam shown in the figure is fabricated 
by welding together two steel plates. If the allowable 
load for each weld is 1.8 kips/in. in the longitudinal 
direction, what is the maximum allowable shear 
force V?

z

y

C

60 mm

60 mm

240 mm

200 mm

Problem 5.11-8

Problem 5.11-9

z

y

C

0.5 in.

0.6 in.

4.5 in.

5.5 in.

Problem 5.11-10

z

y

O

180 mm × 9 mm
cover plates

W 410 × 85

5.11-11  The three beams shown have approximately 
the same cross-sectional area. Beam 1 is a W 14 823  
with flange plates; beam 2 consists of a web plate with 
four angles; and beam 3 is constructed of 2 C shapes 
with flange plates.

(a)	Which design has the largest moment capacity?
(b)	Which has the largest shear capacity?
(c)	 Which is the most economical in bending?
(d)	Which is the most economical in shear?

Assume allowable stress values are: 18 ksia 5  
and 11 ksia 5 . The most economical beam is that 
having the largest capacity-to-weight ratio. Neglect 
fabrication costs in answering parts (c) and (d) above. 
Note: Obtain the dimensions and properties of all 
rolled shapes from tables in Appendix F.

5.11-10  A steel beam is built up from a W 410 853  
wide f lange beam and two 180 mm 9 mm3  cover 
plates (see figure). The allowable load in shear 
on each bolt is 9.8 kN. What is the required bolt 

Problem 5.11-11

8 × 0.52

W 14 × 82

8 × 0.52
Beam 1

4 × 0.375

C 15 × 50

4 × 0.375
Beam 3

14 × 0.675

Four angles

6 × 6 × 1
2
—

Beam 2
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5.12-2  A solid circular pole is subjected to linearly 
varying distributed force with maximum intensity 0q  
at the base and an axial compressive load P at the top 
(see figure). Find the required diameter d of the pole 
if the maximum allowable normal stress is 150 MPa. 
Let 6.5 kN/m0q 5 , 70 kNP 5 , and 3 mL 5 .

5.11-12  Two W 310 743  steel wide-flange beams 
are bolted together to form a built-up beam as shown 
in the figure. What is the maximum permissible 
bolt spacing s if the shear force 80 kNV 5  and the 
allowable load in shear on each bolt is 13.5 kNF 5  
Note: Obtain the dimensions and properties of the 
W shapes from Table F-1(b).

Problem 5.11-12

W 310 × 74

W 310 × 74

5.12 Beams with Axial Loads
When solving the problems for Section 5.12, assume 
that the bending moments are not affected by the pres-
ence of lateral deflections.

Introductory Problems
5.12-1  A pole is fixed at the base and is subjected 
to a linearly varying distributed force with maxi-
mum intensity of 0q  and an axial compressive load 

20 kipsP 5  at the top (see figure). The pole has a cir-
cular cross section with an outer diameter of 5 in. and 
an inner diameter of 4.5 in. Find the normal stresses on 
the surface of the pole at the base at locations A and B.

Problem 5.12-1

d2

d1

P

10 ft

q0 = 400 lb/ft A B
A B

Problem 5.12-2

d

P

L

q0

5.12-3  While drilling a hole with a brace and bit, 
you exert a downward force 25 lbP 5  on the handle 
of the brace (see figure). The diameter of the crank 
arm is 7/16 in.d 5  and its lateral offset is 4-7/8 in.b 5

Determine the maximum tensile and compressive 
stresses t  and c , respectively, in the crank.

Problem 5.12-3

P = 25 lb

d =     in.

b = 4 
7
  in.—8

—
16
7

5.12-4  An aluminum pole for a street light weighs 
4600 N and supports an arm that weighs 660 N (see 
figure). The center of gravity of the arm is 1.2 m from the 
axis of the pole. A wind force of 300 N also acts in the (2y) 
direction at 9 m above the base. The outside diameter of 
the pole (at its base) is 225 mm, and its thickness is 18 mm.
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5.12-7  A palm tree weighing 1000 lb is inclined at 
an angle of 608 (see figure). The weight of the tree 
may be resolved into two resultant forces: a force 

900 lb1P 5  acting at a point 12 ft from the base and a 
force 100 lb2P 5  acting at the top of the tree, which is 
30 ft long. The diameter at the base of the tree is 14 in.

Calculate the maximum tensile and compressive 
stresses t  and c , respectively, at the base of the tree 
due to its weight.

Determine the maximum tensile and compressive 
stresses t  and c , respectively, in the pole (at its base) 
due to the weights and the wind force.

Problem 5.12-4

1.2 m

225 mm

18 mm

W1 = 4600 N

W2 = 660 N

P1 = 300 N

9 m

y

x
y

x

z

Representative Problems
5.12-5  A curved bar ABC having a circular axis 
(radius 12 in.r 5 ) is loaded by forces 400 lbP 5  (see 
figure). The cross section of the bar is rectangular 
with height h and thickness t.

If the allowable tensile stress in the bar is 12,000 
psi and the height 1.25 in.h 5 , what is the minimum 
required thickness mint ?

45° 45°

B

P P
A C

h

r

h

t

Problem 5.12-5

5.12-6  A rigid frame ABC is formed by welding 
two steel pipes at B (see figure). Each pipe has cross-
sectional area 11.31 10 mm3 2A 5 3 , moment of 
inertia 46.37 10 mm6 4I 5 3 , and outside diameter 

200 mmd 5 .
Find the maximum tensile and compressive 

stresses t  and c , respectively, in the frame due to 
the load 8.0 kNP 5  if 1.4 m.L H5 5

Problem 5.12-6

B

P

A C
H

d d

d

L L

Problem 5.12-7

60°

30 ft

12 ft

P2 = 100 lb

P1 = 900 lb

5.12-8  A vertical pole of aluminum is fixed at the 
base and pulled at the top by a cable having a tensile 
force T (see figure). The cable is attached at the outer 
edge of a stiffened cover plate on top of the pole and 
makes an angle 20a 5 8 at the point of attachment. 
The pole has length 2.5 mL 5  and a hollow circular 
cross section with an outer diameter 280 mm2d 5  
and inner diameter 220 mm1d 5 . The circular cover 
plate has diameter 1.5 2d .

Determine the allowable tensile force allowT  in the 
cable if the allowable compressive stress in the alu-
minum pole is 90 MPa.
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5.12-11  A cylindrical brick chimney of height H 
weighs 825 lb/ftw 5  of height (see figure). The inner 
and outer diameters are 3 ft1d 5  and 4 ft2d 5 , respec-
tively. The wind pressure against the side of the chimney 
is 10 lb/ft2p 5  of projected area.

Determine the maximum height H if there is to be 
no tension in the brickwork.

5.12-9  Because of foundation settlement, a circu-
lar tower is leaning at an angle a to the vertical (see 
figure). The structural core of the tower is a circu-
lar cylinder of height h, outer diameter 2d , and inner 
diameter 1d . For simplicity in the analysis, assume 
that the weight of the tower is uniformly distributed 
along the height.

Obtain a formula for the maximum permissible 
angle a if there is to be no tensile stress in the tower.

Problem 5.12-8

L

T

d2

1.5 d2

d1

d2

a

Problem 5.12-9

h d1

d2

α

5.12-10  A steel bracket of solid circular cross 
section is subjected to two loads, each of which is 

4.5 kNP 5  at D (see figure). Let the dimension vari-
able be 240 mmb 5 .

(a)	Find the minimum permissible diameter mind   
of  the bracket if  the allowable normal stress is 
110 MPa.

(b)	Repeat part (a), including the weight of 
the bracket. The weight density of steel is 
77.0 kN/m3.

Problem 5.12-10

6b

2b

A B

D C

P
2b

P

Problem 5.12-11

w

d1

d2

p

H

5.12-12  A flying buttress transmits a load 25 kNP 5 ,  
acting at an angle of 608 to the horizontal, to the top 
of a vertical buttress AB (see figure). The vertical 
buttress has height 5.0 mh 5  and rectangular cross 
section of thickness 1.5 mt 5  and width 1.0 mb 5  

Problem 5.12-12

60°

P

A
A

B B

W

h h
t—2

Flying
buttress

t t
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(perpendicular to the plane of the figure). The stone 
used in the construction weighs 26 kN/m3 5 .

What is the required weight W of the pedestal and 
statue above the vertical buttress (that is, above section A)  
to avoid any tensile stresses in the vertical buttress?

5.12-13  A plain concrete wall (i.e., a wall with no 
steel reinforcement) rests on a secure foundation and 
serves as a small dam on a creek (see figure). The 
height of the wall is 6.0 fth 5  and the thickness of 
the wall is 1.0 ftt 5 .

Problem 5.12-13

h

d

t

(a)	Determine the maximum tensile and compres-
sive stresses t  and c , respectively, at the base 
of the wall when the water level reaches the top 
( )d h5 . Assume plain concrete has weight den-
sity 145 lb/ft3

c 5 .
(b)	Determine the maximum permissible depth maxd  of  

the water if there is to be no tension in the concrete.

Eccentric Axial Loads
5.12-14  A circular post, a rectangular post, and a 
post of cruciform cross section are each compressed 
by loads that produce a resultant force P acting at the 
edge of the cross section (see figure). The diameter of 
the circular post and the depths of the rectangular 
and cruciform posts are the same.

(a)	For what width b of  the rectangular post will 
the maximum tensile stresses be the same in the 
circular and rectangular posts?

(b)	Repeat part (a) for the post with cruciform cross 
section.

(c)	 Under the conditions described in parts (a) 
and (b), which post has the largest compressive 
stress?

Problem 5.12-14

4 ×      = d
d
4
—

4 ×      = b
b
4
—

Load P here

P P P

b

d dd

x

5.12-15  Two cables, each carrying a tensile force 
1200 lbP 5 , are bolted to a block of steel (see figure). 

The block has thickness 1 in.t 5  and width 3 in.b 5

Problem 5.12-15

b

t

P P

(a)	If  the diameter d of  the cable is 0.25 in., what 
are the maximum tensile and compressive 
stresses t  and c , respectively, in the block?

(b)	If  the diameter of the cable is increased (without 
changing the force P), what happens to the max-
imum tensile and compressive stresses?

5.12-16  A bar AB supports a load P acting at the 
centroid of the end cross section (see figure). In the 
middle region of the bar the cross-sectional area is 
reduced by removing one-half of the bar.

(a)	If  the end cross sections of the bar are square 
with sides of length b, what are the maximum 
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Problem 5.12-19

1 1

3

3

2

2

C

1
2
—L 4 × 4 ×

1
2
—2 L 4 × 4 ×

(a) (b)

P

C

P

5.12-18  A short column with a wide-flange shape 
is subjected to a compressive load that produces a 
resultant force 55 kNP 5  acting at the midpoint of 
one flange (see figure).

(a)	Determine the maximum tensile and compressive 
stresses t  and c , respectively, in the column.

(b)	Locate the neutral axis under this loading 
condition.

(c)	 Recompute maximum tensile and compressive 
stresses if  a 120 mm 10 mm3  cover plate is 
added to one flange as shown.

tensile and compressive stresses t  and c ,  
respectively, at cross section mn within the 
reduced region?

(b)	If  the end cross sections are circular with diame-
ter b, what are the maximum stresses t  and c ?

5.12-17  A short column constructed of a W 12 353  
wide-flange shape is subjected to a resultant com-
pressive load 25 kP 5  having its line of action at the 
midpoint of one flange (see figure).

(a)	Determine the maximum tensile and compressive 
stresses t  and c , respectively, in the column.

(b)	Locate the neutral axis under this loading condition.
(c)	 Recompute maximum tensile and compres-

sive stresses if  a C 10 15.33  is attached to one 
flange, as shown.

Problem 5.12-16

(a)

(b)

m n

b
b

P

B

A

b

b

b
2
—

b
2
—

b
2
—

5.12-19  A tension member constructed of an 
L 4 4 1

23 3  inch angle section (see Table F-4(a) 
in Appendix F) is subjected to a tensile load 

12.5 kipsP 5  that acts through the point where the 
mid-lines of the legs intersect (see figure part a).

(a)	Determine the maximum tensile stress t  in the 
angle section.

(b)	Recompute the maximum tensile stress if  two 
angles are used and P is applied as shown in the 
figure part b.

Problem 5.12-17

P = 25 k

2

2

1 1

z

y

C

W 12 × 35

C 10 × 15.3
(Part (c) only)

Problem 5.12-18

P = 55 kN

z

y

C

P

12 mm

8 mm

160
mm

200
mm

Cover plate
(120 mm × 10 mm)
(Part (c) only)

z

y

C
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(a)	For the beam with a hole at midheight, deter-
mine the maximum stresses for hole diameters 

0.25d 5 , 0.50, 0.75, and 1.00 in.
(b)	For the beam with two identical notches (inside 

height 1.25 in.1h 5 ), determine the maximum 
stresses for notch radii 0.05, 0.10, 0.15R 5  and 
0.20 in.

5.13-2  The beams shown in the figure are subjected 
to bending moments 250 N mM 5 ? . Each beam has 
a rectangular cross section with height 44 mmh 5  
and width 10 mmb 5  (perpendicular to the plane of 
the figure).

(a)	For the beam with a hole at midheight, deter-
mine the maximum stresses for hole diameters 

10d 5 , 16, 22, and 28 mm.
(b)	For the beam with two identical notches (inside 

height 40 mm1h 5 ), determine the maximum 
stresses for notch radii 2R 5 , 4, 6, and 8 mm.

5.13-3  A rectangular beam with semicircular 
notches, as shown in part b of the figure, has dimensions 

0.88 in.h 5  and 0.80 in.1h 5  The maximum allowable 
bending stress in the metal beam is 60 ksimax 5 , and 
the bending moment is 600 lb-inM 5 .

Determine the minimum permissible width minb  
of the beam.

5.13-4  A rectangular beam with semicircular 
notches, as shown in part b of the figure, has dimensions 

120 mmh 5  and 100 mm1h 5 . The maximum allow-
able bending stress in the plastic beam is 6 MPamax 5 ,  
and the bending moment is 150 N mM 5 ? .

Determine the minimum permissible width minb  
of the beam.

5.13-5  A rectangular beam with notches and a hole (see 
figure) has dimensions 5.5 in.h 5 , 5 in.1h 5 , and width 

1.6 in.b 5  The beam is subjected to a bending moment 
130 kip-in.M 5 , and the maximum allowable bending 

stress in the material (steel) is 42,000 psimax 5 .

(a)	What is the smallest radius minR  that should be 
used in the notches?

(b)	What is the diameter maxd  of the largest hole that 
should be drilled at the midheight of the beam?

5.12-20  A short length of a C 200 17.13  channel is 
subjected to an axial compressive force P that has its 
line of action through the midpoint of the web of the 
channel (see figure part a).

(a)	Determine the equation of the neutral axis 
under this loading condition.

(b)	If  the allowable stresses in tension and compres-
sion are 76 MPa and 52 MPa respectively, find 
the maximum permissible load maxP .

(c)	 Repeat parts (a) and (b) if  two L 76 76 6.43 3  
angles are added to the channel as shown in the 
figure part b.

See Table F-3(b) in Appendix F for channel proper-
ties and Table F-4(b) for angle properties.

5.13 Stress Concentrations in Bending
The problems for Section 5.13 are to be solved consid-
ering the stress-concentration factors.

5.13-1  The beams shown in the figure are subjected 
to bending moments 2100 lb-inM 5 . Each beam has 
a rectangular cross section with height 1.5 in.h 5  and 
width 0.375 in.b 5  (perpendicular to the plane of the 
figure).

Problem 5.12-20

Cz

y

P
C 200 × 17.1

(a)

C

y

P

C 200 × 17.1

(b)

z

Two L 76 × 76 × 6.4 angles

Problems 5.13-1 through 5.13-4

(b)

(a)

M

MM

M

dh

h h1

2R

Problem 5.13-5

M
M

dh1 h

2R
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