
Fundamental Principles 
of Traffic Flow

Traffic flow theory involves the development of mathematical relationships among the 
primary elements of a traffic stream: flow, density, and speed. These relationships help the 
traffic engineer in planning, designing, and evaluating the effectiveness of implementing 

traffic engineering measures on a highway system. Traffic flow theory is used in many aspects 
of design; for example, to determine adequate lane lengths for storing left-turn vehicles on 
separate left-turn lanes, the average delay at intersections and freeway ramp merging areas, 
and changes in the level of freeway performance due to the installation of improved vehicular 
control devices on ramps. Another important application of traffic flow theory is simulation, 
where mathematical algorithms are used to study the complex interrelationships that exist 
among the elements of a traffic stream or network and to estimate the effect of changes in 
traffic flow on factors such as crashes, travel time, air pollution, and gasoline consumption.

Methods ranging from physical to empirical have been used in studies related to the 
description and quantification of traffic flow. This chapter, however, will introduce only 
those aspects of traffic flow theory that can be used in the planning, design, and opera-
tion of highway systems.

Chapter Objectives:
•	 Become familiar with the different elements of traffic flow.
•	 Understand the relationships among the different elements of traffic flow.
•	 Become familiar with the fundamental diagram of traffic flow.
•	 Understand the difference between macroscopic and microscopic traffic models.
•	 Understand how the different types of traffic shock waves are formed.
•	 Learn the procedures for determining queue lengths due to different types of shock 

waves.
•	 Understand the fundamental principles of gap and gap acceptance.
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6.1 T raffic Flow Elements
Let us first define the elements of traffic flow before discussing the relationships among 
them. However, before we do that, we will describe the time-space diagram that serves 
as a useful device for defining the elements of traffic flow.

6.1.1 T ime-Space Diagram
The time-space diagram is a graph that describes the relationship between the loca-
tion of vehicles in a traffic stream and time as the vehicles progress along the highway. 
Figure 6.1 shows a time-space diagram for six vehicles with distance plotted on the verti-
cal axis and time on the horizontal axis. At time zero, vehicles 1, 2, 3, and 4 are at respec-
tive distances d1, d2, d3, and d4 from a reference point whereas vehicles 5 and 6 cross the 
reference point later at times t5 and t6, respectively.

6.1.2 P rimary Elements of Traffic Flow
The primary elements of traffic flow are flow, density, and speed. Another element, 
associated with density, is the gap or headway between two vehicles in a traffic stream. 
The definitions of these elements follow.

Flow

Flow (q) is the equivalent hourly rate at which vehicles pass a point on a highway during 
a time period less than 1 hour. It can be determined by:

	 q 
n  3600

T
  veh/h	 (6.1)

where
n = the number of vehicles passing a point in the roadway in T sec
q = the equivalent hourly flow

Figure 6.1  Time-Space Diagram
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Density

Density (k), sometimes referred to as concentration, is the number of vehicles traveling 
over a unit length of highway at an instant in time. The unit length is usually 1 mile (mi), 
thereby making vehicles per mile (veh/mi) the unit of density.

Speed

Speed (u) is the distance traveled by a vehicle during a unit of time. It can be expressed in 
miles per hour (mi/h), kilometers per hour (km/h), or feet per second (ft/sec). The speed 
of a vehicle at any time t is the slope of the time-space diagram for that vehicle at time 
t. Vehicles 1 and 2 in Figure 6.1, for example, are moving at constant speeds because 
the slopes of the associated graphs are constant. Vehicle 3 moves at a constant speed 
between time zero and time t3, then stops for the period t3 to t3 (the slope of graph 
equals 0), and then accelerates and eventually moves at a constant speed. There are 
two types of mean speeds: time mean speed and space mean speed.

Time mean speed (ut) is the arithmetic mean of the speeds of vehicles passing a point 
on a highway during an interval of time. The time mean speed is found by:

	 ut 
1
n

 an
i1

ui	 (6.2)

where
 n = number of vehicles passing a point on the highway
ui = speed of the ith vehicle (ft/sec)

Space mean speed (us) is the harmonic mean of the speeds of vehicles passing a point 
on a highway during an interval of time. It is obtained by dividing the total distance trav-
eled by two or more vehicles on a section of highway by the total time required by these 
vehicles to travel that distance. This is the speed that is used in flow-density relationships. 
The space mean speed is found by

	  us 
n

an
i1

(1/ui)
	 (6.3)

 
nL

an
i1

ti

where
us  space mean speed (ft/sec)
 n = number of vehicles
 ti = the time it takes the ith vehicle to travel across a section of highway (sec)
ui = speed of the ith vehicle (ft/sec)
 L = length of section of highway (ft)

The time mean speed is always higher than the space mean speed. The difference 
between these speeds tends to decrease as the absolute values of speeds increase. It has 
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been shown from field data that the relationship between time mean speed and space 
mean speed can be given as

	 ut  us 
s2

us

	 (6.4)

Equation 6.5 shows a more direct relationship developed by Garber and Sankar using 
data collected at several sites on freeways. Figure 6.2 also shows a plot of time mean 
speeds against space mean speeds using the same data.

	 ut  0.966us  3.541	 (6.5)

where
 ut  time mean speed, km/h
us = space mean speed, km/h

Note that the values of the coefficients given in Eq. 6.5 are unique to the sites at which 
data were collected and may slightly differ from site to site.

Time Headway

Time headway (h) is the difference between the time the front of a vehicle arrives at a 
point on the highway and the time the front of the next vehicle arrives at that same point. 
Time headway is usually expressed in seconds. For example, in the time-space diagram 
(Figure 6.1), the time headway between vehicles 3 and 4 at d1 is h3−4.

Space Headway

Space headway (d) is the distance between the front of a vehicle and the front of the 
following vehicle and is usually expressed in feet. The space headway between vehicles 
3 and 4 at time t5 is d3−4 (see Figure 6.1).

Figure 6.2  Space Mean Speed versus Time Mean Speed
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Example 6.1  Determining Flow, Density, Time Mean Speed, and Space Mean Speed

Figure 6.3 shows vehicles traveling at constant speeds on a two-lane highway between 
sections X and Y with their positions and speeds obtained at an instant of time by photo
graphy. An observer located at point X observes the four vehicles passing point X during 
a period of T sec. The velocities of the vehicles are measured as 45, 45, 40, and 30 mi/h, 
respectively. Calculate the flow, density, time mean speed, and space mean speed.

Solution:  The flow is calculated by

	  q 
n  3600

T
	 (6.6)

 
4  3600

T


14,400
T

  veh/h

With L equal to the distance between X and Y (ft), density is obtained by

 k 
n
L

 
4

300
  5280  70.4 veh/mi

The time mean speed is found by

 ut 
1
n

 an
i1

ui

 
30  40  45  45

4
  40 mi/h

The space mean speed is found by

 us 
n

an
i1

(1/ui)

 
nL

an
i1

ti

Figure 6.3  Locations and Speeds of Four Vehicles on a Two-Lane Highway at an Instant of Time
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6.2 F low-Density Relationships
The general equation relating flow, density, and space mean speed is given as

	  Flow  density  space mean speed	 (6.7)

	  q  kus

Each of the variables in Eq. 6.7 also depends on several other factors, including the char-
acteristics of the roadway, characteristics of the vehicle, characteristics of the driver, and 
environmental factors such as the weather.

Other relationships that exist among the traffic flow variables are given here.

	  Space mean speed  (flow)  (space headway)	 (6.8)

	 us  qd

where

	  d  (1/k)  average space headway 	 (6.9)

	  Density  (flow)  (travel time for unit distance)	 (6.10)

	 k  qt

where t is the average time for unit distance.

 
300n

an
t1

ti

where ti is the time it takes the ith vehicle to travel from X to Y at speed ui, and L (ft) 
is the distance between X and Y.

 ti 
L

1.47ui

  sec

 tA 
300

1.47  45
  4.54 sec

 tB 
300

1.47  45
  4.54 sec

 tC 
300

1.47  40
  5.10 sec

 tD 
300

1.47  30
  6.80 sec

 us 
4  300

4.54  4.54  5.10  6.80
  57 ft/sec 

  39.0 mi/h
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Average space headway  (space mean speed)  (average time headway)

	 d  ush	 (6.11)

 Average time headway  (average travel time for unit distance)

	   (average space headway) 	 (6.12)

	 h  t d

Note that it is not easy to directly obtain density from speed data collected in the field 
using the conventional methods discussed in Chapter 4. A flow characteristic that is 
related to density and can be obtained from speed data is occupancy. Occupancy is 
defined as the proportion of a specific data collection time interval that vehicles are 
present in the detection zone. It is given as:

 occupancy 
a

i
(Li  d)/ui

T
 , which can be written as

	  occupancy 
1
T

 a Li

ui

 
d
T

 a 1
ui

	 (6.13)

where
Li = length of ith vehicle
 d = length of detector
 T = specific data collection time interval

Note that the numerator of Eq. 6.13 indicates the amount of time each vehicle affects the 

detector. By multiplying the second term of Eq. 6.13 by 
N
N

, it can be written as:

	 occupancy 
1
T a Li

ui

 
dN
NT a 1

ui

	 (6.14)

Substituting  
N
T

  for q and  
1
N a

i

1
ui

   for  
1
us

  (see Eq. 6.3), we obtain

	 occupancy 
1
T

 a Li

ui

  d 
q

us

	 (6.15)

Substituting k for 
q

us

 in Eq. 6.15, we obtain

	 occupancy 
1
T

 a
1

Li

ui

  dk	 (6.16)

Note that T is the sum of the headways of the individual vehicles  hi. Substituting hi 

for T and multiplying the first term of Eq. 6.16 by 
N
N

, we obtain

	 occupancy 

1
N

 a
i

Li

ui

h
  dk	 (6.17)
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Assuming that the lengths of the vehicles are approximately the same, we obtain

	  occupancy 
1

h
 L

1
N

 a
i

1
ui

 dk  L 
q

us

 dk	 (6.18)

	  occupancy  (L  d)k  ckk 	 (6.19)

where ck is a constant as d at a given detector is constant and L is assumed to be constant. 
It should be emphasized, however, that Eq. 6.19 is applicable only when the variation 
in vehicle lengths is not significant. When the lengths of the vehicles vary significantly 
(for  example, when a significant number of different truck types is in the traffic stream), 
Eq. 6.19 is not applicable, and Eq. 6.16 or 6.17 should be used.

Example 6.2  Determining Density for Different Assumptions of Vehicle Lengths

Columns 1, 2, and 3 of Table 6.1 give data obtained on vehicles on a lane traversing a 
detection zone as recorded by a presence detector. If the length of the detector zone 
is 6 ft:

	 (i)	� Determine the density on the lane without assuming that the lengths of the vehi-
cles are approximately the same.

	(ii)	� Determine the density on the lane assuming that the lengths of the vehicles are 
approximately the same.

(iii)	� Comment on your results.

Table 6.1  Data and Solution for Example 6.2

 
 

Vehicle #  
(1)

Length of  
Vehicle,  
Li (ft)  

(2)

Time Headway  
between Consecutive  

Vehicles (sec)  
(3)

Speed of  
Vehicle  
(mi/h)  

(4)

Time Vehicle Spends  
in Detector Zone  

(sec)  
(6)

 
 

L
i /ui 

(7)

  1 19 55 0.309 0.235
  2 19 5.5 55 0.309 0.235
  3 19 4.5 50 0.340 0.259
  4 30 4.0 45 0.544 0.454
  5 30 5.5 48 0.510 0.425
  6 30 5.0 45 0.544 0.454
  7 19 5.5 60 0.283 0.215
  8 19 5.5 60 0.283 0.215
  9 30 3.5 45 0.544 0.454
10 19 4.5 55 0.309 0.235
11 19 5.0 50 0.340 0.259
12 19 5.5 60 0.283 0.215
13 39.5 6.0 60 0.516 0.448

Σ = 311.5 Σ = 60.0 sec Σ = 5.114 Σ = 4.103
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Solution:

•	 Determine occupancy without assuming similar lengths for vehicles.

Determine specific data collection time interval. This is given as the sum of 
the headways = 60 sec (see col. 3).
Determine time spent by each vehicle over detector zone (Li + d)/ui.
For example, time spent over detector zone by vehicle 5 is given as

(30  6)/(48  1.47)  0.510 sec (See col. 6 for the other vehicles.)

Determine total time spent over detector by all vehicles. This is obtained by 
summing the values in col. 6 as 5.114 sec.

 occupancy  (total time over detector/data collection
	 time interval)

  5.114/60  0.085, i.e., 8.5%

•	 �Determine density, not assuming that the lengths of vehicles are approximately 
the same. Use Eq. 6.16.

 occupancy 
1
T

 a
1

Li

ui

 dk

 0.085  (1/60)  4.103  6k

 0.085  0.0684  6k

Giving	  k  0.00277 veh/ft

  14.61 veh/mi

•	 Determine density, assuming similar lengths for vehicles. Use Eq. 6.19.

Occupancy  (L  d)k

	 where L is the mean length

L  311.5/13  23.96 ft

 0.085  (23.96  6)k

Giving	  k  0.00284 veh/ft

  14.995 veh/mi

•	 �Comment: The results indicate that assuming that the lengths of the vehicles 
are approximately the same and using the mean length gives a different density 
for the same set of data. In this problem, the difference is about 0.4 vehicles 
per mile, which could be considered as not significant. It should be noted that 
the difference for other sets of data will depend on the variability of the vehicle 
lengths in the data set. The use of either one method or the other will therefore 
depend on the extent of the variability of the vehicle lengths in the data set and 
the accuracy that the analyst requires.
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6.2.1  Fundamental Diagram of Traffic Flow
The relationship between the density (veh/mi) and the corresponding flow of traffic 
on a highway is generally referred to as the fundamental diagram of traffic flow. The 
following theory has been postulated with respect to the shape of the curve depicting 
this relationship:

	 1.	 When the density on the highway is 0, the flow is also 0 because there are no vehicles 
on the highway.

	 2.	 As the density increases, the flow also increases.
	 3.	 However, when the density reaches its maximum, generally referred to as the jam 

density (kj), the flow must be 0 because vehicles will tend to line up end to end.
	 4.	 It follows that as density increases from 0, the flow will also initially increase from 

0 to a maximum value. Further continuous increase in density will then result in 
continuous reduction of the flow, which will eventually be 0 when the density 
is equal to the jam density. The shape of the curve therefore takes the form in 
Figure 6.4a.

Data have been collected that tend to confirm the argument postulated above, but 
there is some controversy regarding the exact shape of the curve. A similar argument can 
be postulated for the general relationship between the space mean speed and the flow. 

Figure 6.4  Fundamental Diagrams of Traffic Flow
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When the flow is very low, there is little interaction between individual vehicles. Driv-
ers are therefore free to travel at the maximum possible speed. The absolute maximum 
speed is obtained as the flow tends to 0, and it is known as the mean free-flow speed (uf). 
The magnitude of the mean free speed depends on the physical characteristics of the 
highway. Continuous increase in flow will result in a continuous decrease in speed. 
A point will be reached, however, when the further addition of vehicles will result in 
the reduction of the actual number of vehicles that pass a point on the highway (that is, 
reduction of flow). This results in congestion, and eventually both the speed and the 
flow become 0. Figure 6.4c shows this general relationship. Figure 6.4b shows the direct 
relationship between speed and density.

From Eq. 6.7, we know that space mean speed is flow divided by density, which 
makes the slopes of lines 0B, 0C, and 0E in Figure 6.4a represent the space mean speeds 
at densities kb, kc, and ke, respectively. The slope of line 0A is the speed as the density 
tends to 0 and little interaction exists between vehicles. The slope of this line is therefore 
the mean free speed (uf); it is the maximum speed that can be attained on the highway. 
The slope of line 0E is the space mean speed for maximum flow. This maximum flow is 
the capacity of the highway. Thus, it can be seen that it is desirable for highways to oper-
ate at densities not greater than that required for maximum flow.

6.2.2  Mathematical Relationships Describing Traffic Flow
Mathematical relationships describing traffic flow can be classified into two general 
categories—macroscopic and microscopic—depending on the approach used in the 
development of these relationships. The macroscopic approach considers flow-density 
relationships, whereas the microscopic approach considers the spacing between two con-
secutive vehicles and the speeds of individual vehicles.

Macroscopic Approach

The macroscopic approach considers traffic streams and develops algorithms that relate 
the flow to the density and space mean speeds. The two most commonly used macro-
scopic models are the Greenshields and Greenberg models.

Greenshields Model.  Greenshields carried out one of the earliest recorded works in 
which he studied the relationship between speed and density. He hypothesized that a 
linear relationship existed between speed and density, which he expressed as

	 us  uf 
uf

kj

 k	 (6.20)

Corresponding relationships for flow and density and for flow and speed can be 
developed. Since q  usk, substituting q/us for k in Eq. 6.20 gives

	 us
2  uf us 

uf

kj

 q	 (6.21)

Also, substituting q/k for us in Eq. 6.20 gives

	 q  ufk 
uf

kj

 k2	 (6.22)
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Equations 6.21 and 6.22 indicate that if a linear relationship in the form of Eq. 6.20 is 
assumed for speed and density, then parabolic relationships are obtained between flow 
and density and between flow and speed. The shape of the curve shown in Figure 6.4a 
will therefore be a parabola. Also, Eqs. 6.21 and 6.22 can be used to determine the cor-
responding speed and the corresponding density for maximum flow. Consider Eq. 6.21:

us
2  uf us 

uf

kj

 q

Differentiating q with respect to us, we obtain

2us  uf 
uf

kj

 
dq

dus

that is,

dq

dus

  uf 
kj

uf

  2us 
kj

uf

  kj  2us 
kj

uf

For maximum flow,

	
dq

dus

  0  kj  2us 
kj

uf

   uo 
uf

2
	 (6.23)

Thus, the space mean speed uo at which the volume is maximum is equal to half the mean 
free-flow speed.

Consider Eq. 6.22:

q  uf k 
uf

kj

 k2

Differentiating q with respect to k, we obtain:

dq

dk
  uf  2k 

uf

kj

For maximum flow,

	
dq

dk
 0	 (6.24)

	 uf  2k 
uf

kj

	
kj

2
 ko

Thus, at the maximum flow, the density ko is half the jam density. The maximum flow for 
the Greenshields relationship can therefore be obtained from Eqs. 6.7, 6.23, and 6.24, as 
shown in Eq. 6.25:

	 qmax 
kjuf

4
	 (6.25)
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Greenberg Model.  Several researchers have used the analogy of fluid flow to develop 
macroscopic relationships for traffic flow. One of the major contributions using the fluid-
flow analogy was developed by Greenberg in the form

	 us  c ln 
kj

k
	 (6.26)

Multiplying each side of Eq. 6.26 by k, we obtain

usk  q  ck ln 
kj

k

Differentiating q with respect to k, we obtain

dq

dk
  c ln 

kj

k
  c

For maximum flow,

dq

dk
  0

giving

	  ln 
kf

ko

  1	 (6.27)

Substituting 1 for (kj/ko) in Eq. 6.26 gives

uo  c

Thus, the value of c is the speed at maximum flow.

Model Application

Use of these macroscopic models depends on whether they satisfy the boundary criteria 
of the fundamental diagram of traffic flow at the region that describes the traffic con-
ditions. For example, the Greenshields model satisfies the boundary conditions when 
the density k is approaching zero as well as when the density is approaching the jam 
density kj. The Greenshields model can therefore be used for light or dense traffic. 
The Greenberg model, on the other hand, satisfies the boundary conditions when the 
density is approaching the jam density but it does not satisfy the boundary conditions 
when k is approaching zero. The Greenberg model is therefore useful only for dense 
traffic conditions.

Calibration of Macroscopic Traffic Flow Models.  The traffic models discussed thus 
far can be used to determine specific characteristics, such as the speed and density at 
which maximum flow occurs, and the jam density of a facility. This usually involves 
collecting appropriate data on the particular facility of interest and fitting the data 
points obtained to a suitable model. The most common method of approach is regression 
analysis. This is done by minimizing the squares of the differences between the observed 
and expected values of a dependent variable. When the dependent variable is linearly 
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related to the independent variable, the process is known as linear regression analysis. 
When the relationship is with two or more independent variables, the process is known 
as multiple linear regression analysis.

If a dependent variable y and an independent variable x are related by an estimated 
regression function, then

	 y  a  bx	 (6.28)

The constants a and b could be determined from Eqs. 6.29 and 6.30. (For development 
of these equations, see Appendix B.)

	 a 
1
n

 an
i1

yi 
b
n

 an
i1

xi  y  bx	 (6.29)

and

	 b 
an
i1

xiyi 
1
n

 a an
i1

xib a an
i1

yib

an
i1

xi
2 

1
n

 a an
i1

xib
2

	 (6.30)

where

 n = number of sets of observations
xi = ith observation for x
yi = ith observation for y

A measure commonly used to determine the suitability of an estimated regression 
function is the coefficient of determination (or square of the estimated correlation coef-
ficient) R2, which is given by

	 R2 
an
i1

(Yi  y)2

an
i1

(yi  y)2
	 (6.31)

where Yi is the value of the dependent variable as computed from the regression equa-
tions and yi is the mean of the yi values. The closer R2 is to 1, the better the regression fits.

Example 6.3  Fitting Speed and Density Data to the Greenshields Model

Let us now use the data shown in Table 6.2 (columns 1 and 2) to demonstrate the use of 
the method of regression analysis in fitting speed and density data to the macroscopic 
models discussed earlier.

Solution:  Let us first consider the Greenshields expression

us  uf 
uf

kj

 k
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Table 6.2  Speed and Density Observations at a Rural Road

(a) Computations for Example 6.3

Speed, us  
(mi/h) yi

Density, k  
(veh/mi) xi

 
xiyi

 
xi

2

53.2   20 1064.0      400
48.1   27 1298.7      729
44.8   35 1568.0   1,225
40.1   44 1764.4   1,936
37.3   52 1939.6   2,704
35.2   58 2041.6   3,364
34.1   60 2046.0   3,600
27.2   64 1740.8   4,096
20.4   70 1428.0   4,900
17.5   75 1312.5   5,625
14.6   82 1197.2   6,724
13.1   90 1179.0   8,100
11.2 100 1120.0 10,000
  8.0 115   920.0 13,225

Σ = 404.8 Σ = 892 Σ = 20,619.8 Σ = 66,628.0
     y  28.91         x  63.71

(b) Computations for Example 6.4

Speed, us  
(mi/h) yi

Density, k  
(veh/mi)

 
ln ki xi

 
xiyi

 
xi

2

53.2   20 2.995732 159.3730 8.974412
48.1   27 3.295837 158.5298 10.86254
44.8   35 3.555348 159.2796 12.64050
40.1   44 3.784190 151.746 14.32009
37.3   52 3.951244 147.3814 15.61233
35.2   58 4.060443 142.9276 16.48720
34.1   60 4.094344 139.6171 16.76365
27.2   64 4.158883 113.1216 17.29631
20.4   70 4.248495 86.66929 18.04971
17.5   75 4.317488 75.55605 18.64071
14.6   82 4.406719 64.33811 19.41917
13.1   90 4.499810 58.94750 20.24828
11.2 100 4.605170 51.57791 21.20759
8.0 115 4.744932 37.95946 22.51438

Σ = 404.8 Σ = 56.71864 Σ = 1547.024 Σ = 233.0369
     y  28.91 x  4.05

Chapter 6 Fundamental Principles of Traffic Flow 267

31020_ch06_hr_253-306.indd   267 9/14/18   4:57 PM



Comparing this expression with our estimated regression function, Eq. 6.28, we see 
that the speed us in the Greenshields expression is represented by y in the estimated 
regression function, the mean free speed uf is represented by a, and the value of the 
mean free speed uf divided by the jam density kj is represented by b. We therefore 
obtain

	 a yi  404.8    a xi  892     y  28.91

a xiyi  20,619.8   a xi
2  66,628   x  63.71

•	 Using Eqs. 6.29 and 6.30, we obtain

 a  28.91  63.71b

 b 

20,619.8 
(892)(404.8)

14

66,628 
(892)2

14

  0.53

or

a  28.91  63.71(0.53)  62.68

Since a = 62.68 and b = −0.53, then uf = 62.68 mi/h, uf /kj = 0.53, and so kj = 118 veh/mi, 
and us  62.68  0.53k.

•	 Using Eq. 6.31 to determine the value of R2, we obtain R2 = 0.95.
•	 �Using the above estimated values for uf and kj, we can determine the maximum 

flow from Eq. 6.25 as

 qmax 
kjuf

4
 

118  62.68
4

  1849 veh/h

•	 �Using Eq. 6.23, we also obtain the velocity at which flow is maximum, that is, 
(62.68/2) = 31.3 mi/h, and Eq. 6.24, the density at which flow is maximum, or 
(118/2) = 59 veh/h.

Example 6.4  Fitting Speed and Density Data to the Greenberg Model

The data in Table 6.2b can also be fitted into the Greenberg model shown in Eq. 6.26:

us  c ln 
kj

k

which can be written as

	 us  c ln kj  c ln k	 (6.32)
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Solution:  Comparing Eq. 6.32 and the estimated regression function Eq. 6.28, we see 
that us in the Greenberg expression is represented by y in the estimated regression func-
tion, c ln kj is represented by a, c is represented by b, and ln k is represented by x. Table 
6.2b shows values for xi, xiyi, and xi

2. (Note that these values are computed to a higher 
degree of accuracy since they involve logarithmic values.) We therefore obtain

	 a yi  404.8     a xi  56.72   y  28.91

a xiyi  1547.02   a xi
2  233.04   x  4.05

Using Eqs. 6.29 and 6.30, we obtain

 a  28.91  4.05b

 b 

1547.02 
(56.72)(404.8)

14

233.04 
56.722

14

  28.68

or

a  28.91  4.05(28.68)  145.06

Since a = 145.06 and b = −28.68, the speed for maximum flow is c = 28.68 mi/h. Finally, 
since

 c ln kj  145.06

  ln kj 
145.06
28.68

  5.06

 kj  157 veh/mi

then

us  28.68 ln 
157
k

Obtaining ko, the density for maximum flow from Eq. 6.27, we then use Eq. 6.7 to 
determine the value of the maximum flow.

  ln kj  1  ln ko

  ln 157  1  ln ko

 5.06  1  ln ko

 58.0  ko

 qmax  58.0  28.68 veh/h

 qmax  1663 veh/h

The R2 based on the Greenberg expression is 0.93, which indicates that the Green-
shields expression is a better fit for the data in Table 6.2. Figure 6.5 shows plots of 
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Software Packages for Linear Regression Analysis.  Several software packages are 
available that can be used to solve the linear regression problem. These include Excel, 
MiniTab, SAS, and SPSS. Appendix C illustrates the use of the Excel spreadsheet to 
solve Example 6.3.

Microscopic Approach

The microscopic approach, which is sometimes referred to as the car-following theory 
or the follow-the-leader theory, considers spacings between consecutive vehicles and 
speeds of individual vehicles. Consider two consecutive vehicles, A and B, on a single 

speed versus density for the two estimated regression functions obtained and also for 
the actual data points. Figure 6.6 shows similar plots for the volume against density.

Figure 6.5  Speed versus Density

Figure 6.6  Volume versus Density

270 Part 2 Traffic Operations

31020_ch06_hr_253-306.indd   270 9/14/18   4:57 PM



lane of a highway, as shown in Figure 6.7. If the leading vehicle (A) is considered to be 
the nth vehicle and the following vehicle (B) is considered the (n + 1)th vehicle, then 
the distances of these vehicles from a fixed section at any time t can be taken as xn and 
xn+1, respectively.

If the driver of vehicle B maintains an additional separation distance P above the 
separation distance at rest S such that P is proportional to the speed of vehicle B, then

	 P  rx
#

n1	 (6.33)

where

     r  factor of proportionality with units of time
x
#

n1  speed of the (n + 1)th vehicle

We can write

	 xn  xn1  rx
#

n1  S	 (6.34)

where S is the distance between front bumpers of vehicles at rest.
Differentiating Eq. 6.34 gives

	 x
$

n1 
1
r

 [x
#

n  x
#

n1]	 (6.35)

Equation 6.35 is the basic equation of microscopic models and it describes the stimulus 
response of the models. Researchers have shown that a time lag exists for a driver to 
respond to any stimulus that is induced by the vehicle just ahead and Eq. 6.35 can there-
fore be written as

	 x
$

n1(t  T)  l[x
#

n(t)  x
#

n1(t)]	 (6.36)

where

T = time lag of response to the stimulus
 l = (1/p) (sometimes called the sensitivity)

A general expression for l is given in the form

	 l a 
x
#

n1
m (t  T)

[xn(t)  xn1(t)]/
	 (6.37)

Figure 6.7  Basic Assumptions in the Follow-the-Leader Theory

Chapter 6 Fundamental Principles of Traffic Flow 271

31020_ch06_hr_253-306.indd   271 9/14/18   4:57 PM



The general expression for the microscopic models can then be written as

	 x
$

n1(t  T)  a 
x
#

n1
m (t  T)

[xn(t)  xn1(t)]/
 [x

#
n(t)  x

#
n1(t)]	 (6.38)

where a, /, and m are constants.
The microscopic model (Eq. 6.31) can be used to determine the velocity, flow, and 

density of a traffic stream when the traffic stream is moving in a steady state. The direct 
analytical solution of either Eq. 6.36 or Eq. 6.38 is not easy. It can be shown, however, 
that the macroscopic models discussed earlier can all be obtained from Eq. 6.38.

For example, if m = 0 and /  1, the acceleration of the (n + 1)th vehicle is given as

x
$

n1(t  T)  a 
x
#

n(t)  x
#

n1(t)

xn(t)  xn1(t)

Integrating the above expression, we find that the velocity of the (n + 1)th vehicle is

x
#

n1(t  T)  a ln [xn(t)  xn1(t)]  C

Since we are considering the steady-state condition,

x
#

n(t  T)  x
#
(t)  u

and

u  a ln [xn  xn1]  C

Also,

xn  xn1  average space headway 
1
k

and

u  a ln a 1
k

 b  C

Using the boundary condition,

u  0

when

k  kj

and

 u  0  a ln a 1
kj

b  C

 C  a ln a 1
kj

b
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Substituting for C in the equation for u, we obtain

 u  a ln a 1
k

 b  a ln a 1
kj

 b

  a ln a
kj

k
 b

which is the Greenberg model given in Eq. 6.26. Similarly, if m is allowed to be 0 and 
/  2, we obtain the Greenshields model.

6.3 S hock Waves in Traffic Streams
The fundamental diagram of traffic flow for two adjacent sections of a highway with 
different capacities (maximum flows) is shown in Figure 6.8. This figure describes the 
phenomenon of backups and queuing on a highway due to a sudden reduction of the 
capacity of the highway (known as a bottleneck condition). The sudden reduction in 
capacity could be due to a crash, reduction in the number of lanes, restricted bridge sizes, 
work zones, a signal turning red, and so forth, creating a situation where the capacity 
on the highway suddenly changes from C1 to a lower value of C2, with a corresponding 
change in optimum density from ko

a to a value of ko
b.

When such a condition exists and the normal flow and density on the highway are 
relatively large, the speeds of the vehicles will have to be reduced while passing the bot-
tleneck. The point at which the speed reduction takes place can be approximately noted 
by the turning on of the brake lights of the vehicles. An observer will see that this point 
moves upstream as traffic continues to approach the vicinity of the bottleneck, indicating 
an upstream movement of the point at which flow and density change. This phenomenon 
is usually referred to as a shock wave in the traffic stream. The phenomenon also exists 
when the capacity suddenly increases, but in this case, the speeds of the vehicles tend to 
increase as the vehicles pass the section of the road where the capacity increases.

Figure 6.8  Kinematic and Shock Wave Measurements Related to Flow-Density Curve
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6.3.1 T ypes of Shock Waves
Several types of shock waves can be formed, depending on the traffic conditions that 
lead to their formation. These include frontal stationary, backward forming, backward 
recovery, rear stationary, and forward recovery shock waves.

Frontal stationary shock waves are formed when the capacity suddenly reduces to 
zero at an approach (for example, when a set of lanes has the red indication at a signal-
ized intersection or when a highway is completely closed because of a serious incident). 
In this case, a frontal stationary shock wave is formed when traffic comes to a stop and 
the capacity is reduced to zero. This type occurs at the location where the capacity is 
reduced to zero. For example, at a signalized intersection, the red signal indicates that 
traffic on the approach or set of lanes cannot move across the intersection, which implies 
that the capacity is temporarily reduced to zero resulting in the formation of a frontal 
stationary shock wave, as shown in Figure 6.9.
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Figure 6.9  Shock Wave at Signalized Intersection
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Backward forming shock waves are formed when the capacity is reduced below the 
demand flow rate resulting in the formation of a queue upstream of the bottleneck. The 
shock wave moves upstream, with its location at any time indicating the end of the queue 
at that time. This may occur at the approach of a signalized intersection when the signal 
indication is red, as shown in Figure 6.9, or at a location on a highway where the number 
of lanes is reduced.

Backward recovery shock waves are formed when the demand flow rate becomes 
less than the capacity of the bottleneck or when the restriction causing the capacity 
reduction at the bottleneck is removed. For example, when the signal indication for a set 
of lanes on a signalized intersection changes from red to green, the traffic flow restriction 
is removed, and traffic on that approach or set of lanes is free to move across the intersec-
tion, causing a backward recovery shock wave, as shown in Figure 6.9. The intersection 
of the backward forming shock wave and the backward recovery shock wave indicates 
the end of the queue shown as point T in Figure 6.9.

Rear stationary and forward recovery shock waves are formed when demand flow 
rate upstream of a bottleneck is first higher than the capacity of the bottleneck and 
then the demand flow rate reduces to the capacity of the bottleneck. For example, con-
sider a four-lane (one direction) highway that leads to a two-lane tunnel in an urban 
area as shown in Figure 6.10. During the off-peak period when the demand capacity 
is less than the tunnel capacity, no shock wave is formed. However, when the demand 
capacity becomes higher than the tunnel capacity during the peak hour, a backward 
forming shock wave is formed. This shock wave continues to move upstream of the 
bottleneck as long as the demand flow is higher than the tunnel capacity, as shown 
in Figure 6.10. However, as the end of the peak period approaches, the demand flow 
rate tends to decrease until it is the same as the tunnel capacity. At this point, a rear 
stationary shock wave is formed until the demand flow becomes less than the tunnel 
capacity, resulting in the formation of a forward recovery shock wave, as shown in 
Figure 6.10.

6.3.2  Velocity of Shock Waves
Let us consider two different densities of traffic, k1 and k2, along a straight highway as 
shown in Figure 6.11, where k1> k2. Let us also assume that these densities are separated 
by the line w representing the shock wave moving at a speed uw. If the line w moves in the 
direction of the arrow (that is, in the direction of the traffic flow), uw is positive.

With u1 equal to the space mean speed of vehicles in the area with density k1 (section P), 
the speed of the vehicle in this area relative to line w is

ur1

 (u1  uw)

The number of vehicles crossing line w from area P during a time period t is

N1  ur1

k1t

Similarly, the speed of vehicles in the area with density k2 (section Q) relative to line w is

ur2

 (u2  uw)

and the number of vehicles crossing line w during a time period t is

N2  ur2

k2t
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Since the net change is zero—that is, N1  N2 and (u1  uw)k1  (u2  uw)k2—we have

	 u2k2  u1k1  uw (k2  k1)	 (6.39)

If the flow rates in sections P and Q are q1 and q2, respectively, then

q1  k1u1   q2  k2u2

Substituting q1 and q2 for k1u1 and k2u2 in Eq. 6.39 gives

q2  q1  uw(k2  k1)

That is,

	 uw 
q2  q1

k2  k1

	 (6.40)

which is also the slope of the line CD shown in Figure 6.8. This indicates that the velocity 
of the shock wave created by a sudden change of density from k1 to k2 on a traffic stream 
is the slope of the chord joining the points associated with k1 and k2 on the volume den-
sity curve for that traffic stream.

6.3.3 � Shock Waves and Queue Lengths Due to a Red Phase at 
a Signalized Intersection

Figure 6.9b also shows the traffic conditions that exist at an approach of a signalized 
intersection when the signal indication is green, changes to red at the end of the green 
phase (start of the red phase), and changes to green again at the end of the red phase 
(start of the green phase). When the signal indication is green, the flow is normal, as 
shown in section 1. When the signals change to red at time t1, two new conditions are 
formed immediately. Flow from this approach is stopped, creating section 2 immedi-
ately downstream of the stop line with a density of zero and flow of zero. At the same 
time, all vehicles immediately upstream of the stop line are stationary, forming section 3,  
where the flow is zero and the density is the jam density. This results in the formation 
of the frontal stationary shock wave with velocity v23 and the backward forming shock 
wave with velocity v13.

At the end of the red phase at time t2 when the signal indication changes to green 
again, the flow rate at the stop line changes from zero to the saturation flow rate (see 
Chapter 8 for definition), as shown in section 4. This results in the forward moving shock 
wave v24. The queue length at this time—that is, at the end of the red phase—is repre-
sented by the line RM. Also at this time, the backward recovery shock wave with velocity 
of v34 is formed that releases the queue as it moves upstream of the stop line. The inter-
section of the backward forming and backward recovery shock waves at point T and time 
t3 indicates the position where the queue is completely dissipated, with the maximum 

Figure 6.11  Movement of Shock Wave Due to Change in Densities
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queue length being represented by the line ST. The backward forming and backward 
recovery shock waves also terminate at time t3, and a new forward moving shock wave 
with velocity v14 is formed.

When the forward moving shock wave crosses the stop line, at time t4, the flow 
changes at the stop line from the saturated flow rate to the original flow rate in section 1, 
and this continues until time t5, when the signals change again to red.

Using Eq. 6.33, we can determine expressions for the velocities of the different shock 
waves and the queue lengths:

The shock wave velocity v12 
q2  q1

k2  k1

 
q1  q2

k1  k2


q1  0

k1  0
  u1	 (6.41)

The shock wave velocity v13 
q1  q3

k1  k3

 
q1  0

k1  kj


q1

k1  kj

	 (6.42)

The shock wave velocity v23 
q2  q3

k2  k3

 
0  0
0  kj


0
kj

  0	 (6.43)

This confirms that this wave is a stationary wave.

The shock wave velocity v24 
q2  q4

k2  k4

 
0  q4

0  k4

  u4	 (6.44)

	 The shock wave velocity v34 
q3  q4

k3  k4

 
0  q4

kj  k4

 
q4

kj  k4

	 (6.45)

The length of the queue at the end of the red signal = r × v13 
rq1

k1  kj

	 (6.46)

where r = the length of the red signal indication. Note that consistent units should be 
used for all variables in Eq. 6.46.

The maximum queue length ST can be determined from Figure 6.9, from where it 

can be seen that v34  tan g
ST

RS
, which gives RS 

ST
 tan g 

. Also, v13 is  tan w:

  tan w 
ST

r  RS

 ST  tan w(r  RS)

 ST  tan war 
ST

 tan g
b

 r 
ST

 tan w


ST
 tan g
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 ST 
r

1
 tan w


1

 tan g

 ST 
r tan w tan g

 tan g tan w

	  ST 
rv13v34

v34  v13

	 (6.47)

The additional time RS (i.e., t3  t2) after the end of the red signal it takes for the maxi-

mum queue to be formed can be obtained from the expression  tan w 
ST

r  RS
, which 

gives

	  RS 
ST

 tan w
 r 	 (6.48)

	  
rv13v34

v13(v34  v13)
 r

	  
rv13

v13  v34

Note that consistent units should be used for all variables in Eq. 6.48.

Example 6.5  Queue Lengths at a Signalized Intersection

The southbound approach of a signalized intersection carries a flow of 1000 veh/h/ln 
at a velocity of 50 mi/h. The duration of the red signal indication for this approach is 
15 sec. If the saturation flow is 2000 veh/h/ln with a density of 75 veh/ln, the jam density 
is 150 veh/mi, determine the following:

	a.	 The length of the queue at the end of the red phase
	b.	 Speed of backward recovery wave velocity
	c.	 The maximum queue length

Solution:
	a.	� Determine speed of backward forming shock wave v13 when signals turn to red. 
Use Eq. 6.40.

 vw 
q2  q1

k2  k1

 v13 
q1  q3

k1  k3

 q1  1000 veh/h/ln

 q3  0 veh/h/ln
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6.3.4 � Shock Waves and Queue Lengths Due to Temporary Speed 
Reduction at a Section of Highway

Let us now consider the situation where the normal speed on a highway is temporarily 
reduced at a section of a highway where the flow is relatively high but lower than its 
capacity. For example, consider a truck that enters a two-lane highway at time t1 and 
travels at a much lower speed than the speed of the vehicles driving behind it. The truck 
travels for some time on the highway and eventually leaves the highway at time t2. If the 
traffic condition is such that the vehicles cannot pass the truck, the shock waves that will 
be formed are shown in Figure 6.12. The traffic condition prior to the truck entering the 
highway at time t1 is depicted as section 1.

At time tl, vehicles immediately behind the truck will reduce their speed to that of 
the truck. This results in an increased density immediately behind the truck, resulting 
in traffic condition 2. The moving shock wave with a velocity of v12 is formed. Also, 
because vehicles ahead of the truck will continue to travel at their original speed, a sec-
tion on the highway just downstream of the truck will have no vehicles, thereby creating 
traffic condition 3. This also results in the formation of the forward moving shock waves 
with velocities of v13 and v32. At time t2, when the truck leaves the highway, the flow 
will be increased to the capacity of the highway with traffic condition 4. This results 
in the formation of a backward moving shock wave velocity v24 and a forward moving 
shock wave with velocity v34. At time t3, shock waves with velocities v12 and v24 coincide, 
resulting in a new forward moving shock wave with a velocity v41. It should be noted 
that the actual traffic conditions 2 and 4 depend on the original traffic condition 1 and 
the speed of the truck.

 k1 
1000
50

 20 veh/mi (see Eq. 6.7.)

 v13 
1000  0
20  150

  mi/h  7.69 mi/h

  7.69  1.47 ft/sec  11.31 ft/sec

Length of queue at end of red phase = 15 × 11.31 = 169.65 ft
	b.	Determine speed of backward recovery wave velocity. Use Eq. 6.40.

v34 
q3  q4

k3  k4

 
0  2000
150  75

  26.67 mi/h  26.677  1.47  39.2 ft/sec

	c.	 Determine the maximum queue length. Use Eq. 6.47.

Maximum queue length 
rv13v34

v34  v13

 
15  11.31  39.2

39.2  11.31
  238.45 ft
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Figure 6.12  Shock Wave Created by Slow Traffic

Example 6.6  Length of Queue Due to a Speed Reduction

The volume at a section of a two-lane highway is 1500 veh/h in each direction and the 
density is about 25 veh/mi. A large dump truck loaded with soil from an adjacent con-
struction site joins the traffic stream and travels at a speed of 10 mi/h for a length of 2.5 mi 
along the upgrade before turning off onto a dump site. Due to the relatively high flow in 
the opposite direction, it is impossible for any car to pass the truck. Vehicles just behind 
the truck therefore have to travel at the speed of the truck, which results in the formation 
of a platoon having a density of 100 veh/mi and a flow of 1000 veh/h. Determine how 
many vehicles will be in the platoon by the time the truck leaves the highway.
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6.3.5  Special Cases of Shock Wave Propagation
The shock wave phenomenon can also be explained by considering a continuous change 
of flow and density in the traffic stream. If the change in flow and the change in density 
are very small, we can write

(q2  q1)  Dq (k2  k1)  Dk

The wave velocity can then be written as

	 uw 
Dq

Dk
 

dq

dk
	 (6.49)

Since q  kus, substituting kus for q in Eq. 6.49 gives

	  uw 
d(kus)

dk
	 (6.50)

	   us  k
dus

dk
	 (6.51)

When such a continuous change of volume occurs in a vehicular flow, a phenomenon 
similar to that of fluid flow exists in which the waves created in the traffic stream trans-
port the continuous changes of flow and density. The speed of these waves is dq/dk and 
is given by Eq. 6.51.

We have already seen that as density increases, the space mean speed decreases (see 
Eq. 6.7), giving a negative value for dus/dk. This shows that at any point on the fundamen-
tal diagram, the speed of the wave is theoretically less than the space mean speed of the 
traffic stream. Thus, the wave moves in the opposite direction relative to that of the traffic 

Solution:  Use Eq. 6.40 to obtain the wave velocity.

 uw 
q2  q1

k2  k1

 uw 
1000  1500

100  25

  6.7 mi/h

Knowing that the truck is traveling at 10 mi/h, the speed of the vehicles in the 
platoon is also 10 mi/h and that the shock wave is moving backward relative to the road 
at 6.7 mi/h, determine the growth rate of the platoon.

10  (6.7)  16.7 mi/h

Calculate the time spent by the truck on the highway—2.5/10 = 0.25 h—to determine 
the length of the platoon by the time the truck leaves the highway.

0.25  16.7  4.2 mi

Use the density of 100 veh/mi to calculate the number of vehicles in the platoon.

100  4.2  420 vehicles
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stream. The actual direction and speed of the wave will depend on the point at which we 
are on the curve (that is, the flow and density on the highway), and the resultant effect 
on the traffic downstream will depend on the capacity of the restricted area (bottleneck).

When both the flow and the density of the traffic stream are very low, that is, 
approaching zero, the flow is much lower than the capacity of the restricted area and 
there is very little interaction between the vehicles. The differential of us with respect to 
k(dus/dk) then tends to zero, and the wave velocity approximately equals the space mean 
speed. The wave therefore moves forward with respect to the road, and no backups result.

As the flow of the traffic stream increases to a value much higher than zero but still lower 
than the capacity of the restricted area (say, q3 in Figure 6.8), the wave velocity is still less than 
the space mean speed of the traffic stream, and the wave moves forward relative to the road. 
This results in a reduction in speed and an increase in the density from k3 to kb

3 as vehicles 
enter the bottleneck but no backups occur. When the volume on the highway is equal to the 
capacity of the restricted area (C2 in Figure 6.8), the speed of the wave is zero and the wave 
does not move. This results in a much slower speed and a greater increase in the density to 
kb

o as the vehicles enter the restricted area. Again, delay occurs but there are no backups.
However, when the flow on the highway is greater than the capacity of the restricted 

area, not only is the speed of the wave less than the space mean speed of the vehicle 
stream, but it moves backward relative to the road. As vehicles enter the restricted area, 
a complex queuing condition arises, resulting in an immediate increase in the density 
from k1 to k2 in the upstream section of the road and a considerable decrease in speed. 
The movement of the wave toward the upstream section of the traffic stream creates a 
shock wave in the traffic stream, eventually resulting in backups, which gradually move 
upstream of the traffic stream.

The expressions developed for the speed of the shock wave, Eqs. 6.40 and 6.51, can 
be applied to any of the specific models described earlier. For example, the Greenshields 
model can be written as

	 usi  uf a1 
ki

kj

 b usi  uf (1  hi)	 (6.52)

where hi = (ki/kj) (normalized density)

uf = mean free speed

If the Greenshields model fits the flow density relationship for a particular traffic 
stream, Eq. 6.40 can be used to determine the speed of a shock wave as

 uw 

ck2uf a1 
k2

kj

b d  ck1uf a1 
k1

k j

b d

k2  k1

 
k2uf (1  h2)  k1uf (1  h1)

k2  k1

 
uf (k2  k1)  k2ufh2  k1ufh1

k2  k1

 

uf (k2  k1) 
uf

kj

 (k2
2  k2

1)

k2  k1
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 

uf (k2  k1) 
uf

kj

 (k2  k1)(k2  k1)

(k2  k1)

  uf [1  (h1  h2)]

The speed of a shock wave for the Greenshields model is therefore given as

	 uw  uf [1  (h1  h2)]	 (6.53)

Density Nearly Equal

When there is only a small difference between k1 and k2 (that is, h1 � h2),

 uw  uf [1  h1  h2] (neglecting the small change in h1)

  uf [1  2h1]

where uf = mean free speed

Stopping Waves

Equation 6.53 can also be used to determine the velocity of the shock wave due to the 
change from green to red of a signal at an intersection approach if the Greenshields model 
is applicable. During the green phase, the normalized density is h1. When the traffic signal 
changes to red, the traffic at the stop line of the approach comes to a halt, which results in 
a density equal to the jam density. The value of h2 is then equal to 1.

The speed of the shock wave, which in this case is a stopping wave, can be obtained by

	 uw  uf [1  (h1  1)]  ufh1	 (6.54)

where uf = mean free speed
Equation 6.54 indicates that in this case the shock wave travels upstream of the traffic 
with a velocity of uf h1. If the length of the red phase is t sec, then the length of the line of 
cars upstream of the stopline at the end of the red interval is uf h1t.

Starting Waves

At the instant when the signal again changes from red to green, h1 equals 1. Vehicles will 
then move forward at a speed of us2, resulting in a density of h2. The speed of the shock 
wave, which in this case is a starting wave, is obtained by

	 uw  uf [1  (1  h2)]  uf h2	 (6.55)

Equation 6.52, us2  uf (1  h2), gives

h2  1 
us2

uf
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The velocity of the shock wave is then obtained as

uw   uf  us2

Since the starting velocity us2 just after the signal changes to green is usually small, the 
velocity of the starting shock wave approximately equals uf .

Example 6.7  Length of Queue Due to a Stopping Shock Wave

Studies have shown that the traffic flow on a single-lane approach to a signalized inter-
section can be described by the Greenshields model. If the jam density on the approach 
is 130 veh/mi, determine the velocity of the stopping wave when the approach signal 
changes to red if the density on the approach is 45 veh/mi and the space mean speed is 
40 mi/h. At the end of the red interval, what length of the approach upstream from the 
stop line will be affected if the red interval is 35 sec?

Solution:

•	 Use the Greenshields model.

 us  uf 
uf

kj

 k

 40  uf 
uf

130
 45

 5200  130uf  45uf

 uf  61.2 mi/h

•	 Use Eq. 6.54 for a stopping wave.

 uw  uf h1

  61.2 
45
130

  21.2 mi/h

Since uw is negative, the wave moves upstream.

•	 Determine the approach length that will be affected in 35 sec.

21.2  1.47  35  1090.7 ft

6.4  Gap And Gap Acceptance
Thus far, we have been considering the theory of traffic flow as it relates to the flow of 
vehicles in a single stream. Another important aspect of traffic flow is the interaction 
of vehicles as they join, leave, or cross a traffic stream. Examples of these include ramp 
vehicles merging onto an expressway stream, freeway vehicles leaving the freeway onto 
frontage roads, the changing of lanes by vehicles on a multilane highway, and vehicles 
turning left or right at a stop sign. The most important factor a driver considers in making 
any one of these maneuvers is the availability of a gap between two vehicles that, in the 
driver’s judgment, is adequate for him or her to complete the maneuver. The evaluation 
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of available gaps and the decision to carry out a specific maneuver within a particular gap 
are inherent in the concept of gap acceptance.

Following are the important measures that involve the concept of gap acceptance:

	 1.	 Merging is the process by which a vehicle in one traffic stream joins another traffic 
stream moving in the same direction, such as a ramp vehicle joining a freeway stream.

	 2.	 Diverging is the process by which a vehicle in a traffic stream leaves that traffic 
stream, such as a vehicle leaving the outside lane of an expressway.

	 3.	 Weaving is the process by which a vehicle first merges into a stream of traffic, 
obliquely crosses that stream, and then merges into a second stream moving in the 
same direction; for example, the maneuver required for a ramp vehicle to join the 
far side stream of flow on an expressway.

	 4.	 Gap is the distance between the rear bumper of a vehicle and the front bumper of 
the following vehicle. It is evaluated by a vehicle driver in a minor stream who wishes 
to merge into the major stream. It is expressed either in units of time (time gap) or 
in units of distance (space gap).

	 5.	 Time lag is the difference between the time a vehicle that merges into a main traffic 
stream reaches a point on the highway in the area of merge and the time a vehicle in 
the main stream reaches the same point.

	 6.	 Space lag is the difference, at an instant of time, between the distance a merging 
vehicle is away from a reference point in the area of merge and the distance a vehicle 
in the main stream is away from the same point.

Figure 6.13 depicts the time-distance relationships for a vehicle at a stop sign waiting to 
merge and for vehicles on the near lane of the main traffic stream.

A driver who intends to merge must first evaluate the gaps that become available to 
determine which gap (if any) is large enough to accept the vehicle, in his or her opinion. 
In accepting that gap, the driver feels that he or she will be able to complete the merging 
maneuver and safely join the main stream within the length of the gap. This phenom-
enon is generally referred to as gap acceptance. It is of importance when engineers are 
considering the delay of vehicles on minor roads wishing to join a major-road traffic 
stream at unsignalized intersections, and also the delay of ramp vehicles wishing to join 
expressways. It can also be used in timing the release of vehicles at an on-ramp of an 
expressway, such that the probability of the released vehicle finding an acceptable gap 
in arriving at the freeway shoulder lane is maximized.

To use the phenomenon of gap acceptance in evaluating delays, waiting times, queue 
lengths, and so forth, at unsignalized intersections and at on-ramps, the average minimum 

Figure 6.13  Time-Space Diagrams for Vehicles in the Vicinity of a Stop Sign
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gap length that will be accepted by drivers should be determined first. Several definitions 
have been given to this “critical” value. Greenshields referred to it as the “acceptable aver-
age minimum time gap” and defined it as the gap accepted by 50 percent of the drivers. 
The concept of “critical gap” was used by Raff, who defined it as the gap for which the 
number of accepted gaps shorter than it is equal to the number of rejected gaps longer than 
it. The data in Table 6.3 are used to demonstrate the determination of the critical gap using 
Raff’s definition. Either a graphical or an algebraic method can be used.

In using the graphical method, two cumulative distribution curves are drawn as 
shown in Figure 6.14. One relates gap lengths t with the number of accepted gaps less 
than t, and the other relates t with the number of rejected gaps greater than t. The inter-
section of these two curves gives the value of t for the critical gap.

In using the algebraic method, it is necessary to first identify the gap lengths between 
where the critical gap lies. This is done by comparing the change in number of accepted 
gaps less than t sec (column 2 of Table 6.3b) for two consecutive gap lengths with the 
change in number of rejected gaps greater than t sec (column 3 of Table 6.3b) for the 
same two consecutive gap lengths. The critical gap length lies between the two consecu-
tive gap lengths where the difference between the two changes is minimal. Table 6.3b 
shows the computation and indicates that the critical gap for this case lies between 3 
and 4 seconds.

For example, in Figure 6.14, with Dt equal to the time increment used for gap analysis, 
the critical gap lies between t1 and t2 = tl + Dt,

Table 6.3  Computation of Critical Gap (tc)

(a) Gaps Accepted and Rejected

1 2 3

Length of Gap  
(t sec)

Number of Accepted Gaps  
(less than t sec)

Number of Rejected Gaps  
(greater than t sec)

0.0 	 0 	 116
1.0 	 2 	 103
2.0 	 12 	   66
3.0 	 m = 32 	 r = 38
4.0 	 n = 57 	 p = 19
5.0 	 84 	 6
6.0 	 116 	 0

(b) Difference in Gaps Accepted and Rejected

1 2 3 4

Consecutive  
Gap Lengths  

(t sec)

Change in Number  
of Accepted Gaps  

(less than t sec)

Change in Number  
of Rejected Gaps 

(greater than t sec)

Difference  
Between Columns  

2 and 3

0.0–1.0   2 13 11
1.0–2.0 10 37 27
2.0–3.0 20 28   8
3.0–4.0 25 19   6
4.0–5.0 27 13 14
5.0–6.0 32   6 26
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where

m = number of accepted gaps less than t1

  r = number of rejected gaps greater than t1

 n = number of accepted gaps less than t2

 p = number of rejected gaps greater than t2

Assuming that the curves are linear between t1 and t2, the point of intersection of 
these two lines represents the critical gap. From Figure 6.14, the critical gap expression 
can be written as

tc  t1  D t1

Using the properties of similar triangles,

 
Dt1

r  m


Dt  Dt1

n  p

 Dt1 
Dt(r  m)

(n  p)  (r  m)

we obtain

	 tc  t1 
Dt(r  m)

(n  p)  (r  m)
	 (6.56)

For the data given in Table 6.3, we thus have

 tc  3 
1(38  32)

(57  19)  (38  32)
  3 

6
38  6

 � 3.16 sec

Figure 6.14  Cumulative Distribution Curves for Accepted and Rejected Gaps
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6.4.1  Stochastic Approach to Gap and Gap Acceptance Problems
The use of gap acceptance to determine the delay of vehicles in minor streams wish-
ing to merge onto major streams requires a knowledge of the frequency of arrivals of 
gaps that are at least equal to the critical gap. This in turn depends on the distribution 
of arrivals of mainstream vehicles at the area of merge. It is generally accepted that for 
light to medium traffic flow on a highway, the arrival of vehicles is randomly distributed. 
It is therefore important that the probabilistic approach to the subject be discussed. It is 
usually assumed that for light-to-medium traffic the distribution is Poisson, although 
assumptions of gamma and exponential distributions have also been made.

Assuming that the distribution of mainstream arrival is Poisson, then the probability 
of x arrivals in any interval of time t sec can be obtained from the expression

	 P(x) 
mxem

x!
   (for x  0, 1, 2 g,)	 (6.57)

where

P(x) = the probability of x vehicles arriving in time t sec
   m = average number of vehicles arriving in time t

If V represents the total number of vehicles arriving in time T sec, then the average num-
ber of vehicles arriving per second is

l
V
T

   m lt

We can therefore write Eq. 6.57 as

	 P(x) 
(lt)xelt

x!
	 (6.58)

Now consider a vehicle at an unsignalized intersection or at a ramp waiting to merge 
into the mainstream flow, arrivals of which can be described by Eq. 6.58. The minor 
stream vehicle will merge only if there is a gap of t sec equal to or greater than its critical 
gap. This will occur when no vehicles arrive during a period t sec long. The probability of 
this is the probability of zero cars arriving (that is, when x in Eq. 6.58 is zero). Substitut-
ing zero for x in Eq. 6.58 will therefore give a probability of a gap (h ≥ t) occurring. Thus,

	  P(0)  P(h  t)  elt  for t  0	 (6.59)

	 P(h  t)  1  elt          for t  0	 (6.60)

Since

P(h  t)  P(h  t)  1

it can be seen that t can take all values from 0 to  , which therefore makes Eqs. 6.59 and 
6.60 continuous functions. The probability function described by Eq. 6.59 is known as 
the exponential distribution.

Equation 6.59 can be used to determine the expected number of acceptable gaps 
that will occur at an unsignalized intersection or at the merging area of an expressway 
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on-ramp during a period T, if the Poisson distribution is assumed for the mainstream 
flow and the volume V is also known. Let us assume that T is equal to 1 h and that V 
is the volume in veh/h on the mainstream flow. Since (V − 1) gaps occur between V 
successive vehicles in a stream of vehicles, the expected number of gaps greater than or 
equal to t is given as

	 Frequency (h  t)  (V  1)elt	 (6.61)

and the expected number of gaps less than t is given as

	 Frequency (h  t)  (V  1)(1  elt)	 (6.62)

Example 6.8  Number of Acceptable Gaps for Vehicles on an Expressway Ramp

The peak hour volume on an expressway at the vicinity of the merging area of an on-
ramp was determined to be 1800 veh/h. If it is assumed that the arrival of expressway 
vehicles can be described by a Poisson distribution, and the critical gap for merging 
vehicles is 3.5 sec, determine the expected number of acceptable gaps for ramp vehicles 
that will occur on the expressway during the peak hour.

Solution:  List the data.

 V  1800

 T  3600 sec

 l (1800/3600)  0.5 veh/sec

Calculate the expected number of acceptable gaps in 1 h using Eq. 6.61.

 (h  t)  (1800  1)e(0.53.5)  1799e1.75  312

The expected number of occurrences of different gaps t for the previous example have 
been calculated and are shown in Table 6.4.

Table 6.4  �Number of Different Lengths of Gaps Occurring During a Period of 1 h for  
V = 1800 veh/h and an Assumed Distribution of Poisson for Arrivals

Probability No. of Gaps

Gap (t sec) P(h ≥ t) P (h < t) h ≥ t h ≤ t

0 1.0000 0.0000 1799       0
0.5 0.7788 0.2212 1401   398
1.0 0.6065 0.3935 1091   708
1.5 0.4724 0.5276   849   950
2.0 0.3679 0.6321   661 1138
2.5 0.2865 0.7135   515 1284
3.0 0.2231 0.7769   401 1398
3.5 0.1738 0.8262   312 1487
4.0 0.1353 0.8647   243 1556
4.5 0.1054 0.8946   189 1610
5.0 0.0821 0.9179   147 1652
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6.5 I ntroduction To Queuing Theory
One of the greatest concerns of traffic engineers is the serious congestion that exists on 
urban highways, especially during peak hours. This congestion results in the formation of 
queues on expressway on-ramps and off-ramps, at signalized and unsignalized intersections, 
and on arterials, where moving queues may occur. An understanding of the processes that 
lead to the occurrence of queues and the subsequent delays on highways is essential for the 
proper analysis of the effects of queuing. The theory of queuing therefore concerns the use 
of mathematical algorithms to describe the processes that result in the formation of queues, 
so that a detailed analysis of the effects of queues can be undertaken. The analysis of queues 
can be undertaken by assuming either deterministic or stochastic queue characteristics.

6.5.1  Deterministic Analysis of Queues
The deterministic analysis assumes that all the traffic characteristics of the queue are 
deterministic and demand volumes and capacities are known. There are two common 
traffic conditions for which the deterministic approach has been used. The first is when 

Example 6.9  Number of Acceptable Gaps with a Restrictive Range, for Vehicles on an Expressway Ramp

Repeat Example 6.7 using a minimum gap in the expressway traffic stream of 1.0 sec 
and the data:

 V  1800

 T  3600

 l (1800/3600)  0.5 veh/sec

 t  3.5 sec

Solution:  Calculate the expected number of acceptable gaps in 1 h.

 (h  t)  (1800  1)e0.5(3.51.0)  1799e0.52.5

  515

The basic assumption made in this analysis is that the arrival of mainstream vehicles 
can be described by a Poisson distribution. This assumption is reasonable for light-to-
medium traffic but may not be acceptable for conditions of heavy traffic. Analyses of 
the occurrence of different gap sizes when traffic volume is heavy have shown that the 
main discrepancies occur at gaps of short lengths (that is, less than 1 sec). The reason for 
this is that although theoretically there are definite probabilities for the occurrence of 
gaps between 0 and 1 sec, in reality these gaps very rarely occur, since a driver will tend 
to keep a safe distance between his or her vehicle and the vehicle immediately in front. 
One alternative used to deal with this situation is to restrict the range of headways by 
introducing a minimum gap. Equations 6.61 and 6.62 can then be written as

	 P(h  t)  el(tτ)       (for t  0)	 (6.63)

	 P(h  t)  1  el(t τ)   (for t  0)	 (6.64)

where τ is the minimum gap introduced.
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an incident occurs on a highway resulting in a significant reduction on the capacity of the 
highway. This can be described as a varying service rate and constant demand condition. 
The second is significant increase in demand flow exceeding the capacity of a section of 
highway which can be described as a varying demand and constant service rate condition.

Varying Service Rate and Constant Demand

Consider a section of three-lane (one direction) highway with a capacity of c veh/h; 
that is, it can serve a maximum volume of c veh/h. (See Chapters 9 and 10 for discussion 
on capacity.) An incident occurs which results in the closure of one lane, thereby reduc-
ing its capacity to cR for a period of t hours, which is the time it takes to clear the incident. 
The demand volume continues to be V veh/h throughout the period of the incident as 
shown in Figure 6.15a. The demand volume is less than the capacity of the highway 
section but greater than the reduced capacity. Before the incident, there is no queue as 
the demand volume is less than the capacity of the highway. However, during the inci-
dent, the demand volume is higher than the reduced capacity, resulting in the formation 
of a queue, as shown in Figure 6.15b. Several important parameters can be determined 
to describe the effect of this reduction in the highway capacity. These include the maxi-
mum queue length, duration of the queue, average queue length, maximum individual 
delay, time a driver spends in the queue, average queue length while the queue exists, 
maximum individual delay, and the total delay.

The maximum queue length (qmax) is the excess demand rate multiplied by the dura-
tion of the incident (tinc) and is given as

	 qmax  (V  cR)tinc vehicles	 (6.65)

The time duration of the queue (tq) is the queue length divided by the difference 
between the capacity and the demand rate and is given as

	 tq 
(V  cR)tinc

(c  V)
  h	 (6.66)

The average queue length (qav) is

	 qav 
(V  cR)tinc

2
  veh	 (6.67)

The total delay (dT) is the time duration of the queue multiplied by the average 
queue length and is given as

	 dT 
(V  cR)tinc

2
 
(V  cR)tinc

(c  V)
 

t 2(V  cR)(c  cR)

2(c  V)
  h	 (6.68)

When using Eqs. 6.65 to 6.68, care should be taken to ensure that the same unit is 
used for all variables.
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Varying Demand and Constant Service Rate

The procedure described in the previous section also can be used for varying demand 
and constant service rate, if it is assumed that the demand changes at specific times and 
does not gradually increase or decrease. The analysis for a gradual increase or decrease 
is beyond the scope of this book. Interested readers may refer to any book on traffic flow 
theory for additional information on this topic.

6.5.2  Stochastic Analyses of Queues
Using a stochastic approach to analyze queues considers the fact that certain traffic 
characteristics such as arrival rates are not always deterministic. In fact, arrivals at an 
intersection, for example, are deterministic or regular only when approach volumes 
are high. Arrival rates tend to be random for light to medium traffic. The stochas-
tic approach is used to determine the probability that an arrival will be delayed, the 
expected waiting time for all arrivals, the expected waiting time of an arrival that waits, 
and so forth.

Example 6.10  Queue Length and Delay Due to an Incident on a Freeway Using Deterministic Analysis

A three-lane expressway (one direction) is carrying a total volume of 4050 veh/h when 
an incident occurs resulting in the closure of two lanes. If it takes 90 min to clear the 
obstruction, determine the following:

	a.	 The maximum queue length that will be formed
	b.	 The total delay
	c.	 The number of vehicles that will be affected by the incident
	d.	 The average individual delay

Assume that the capacity of the highway is 2000 veh/h/ln.

Solution:

•	 Determine capacity, c, of highway = 3 × 2000 = 6000 veh/h
•	 Determine reduced capacity, cR, of highway = 2000 × (3 – 2) = 2000 veh/h
•	 Duration of incident = 90 min = 1.5 h

	a.	 Determine maximum queue length. Use Eq. 6.65.

qmax  (V  cR)tinc vehicles  (4050  2000)  1.5 veh  3075 veh

	b.	 Determine the total delay—use Eq. 6.68.

 dT 
t2
inc(V  cR)(c  cR)

2(c  V)
 

1.52(4050  2000)(6000  2000)

2(6000  4050)

  4731 h

	c.	� Determine the number of vehicles that will be affected by the incident = the 
demand rate multiplied by the duration of the incident = 4050 × 1.5 = 6075 veh

	d.	� Determine the average individual delay. This is obtained by dividing the total 
delay by the number of vehicles affected by the incident = (4731/6075) = 0.779 h
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Several models have been developed that can be applied to traffic situations such as 
the merging of ramp traffic to freeway traffic, interactions at pedestrian crossings, and 
sudden reduction of capacity on freeways. This section will give only the elementary 
queuing theory relationships for a specific type of queue; that is, the single-channel queue. 
The theoretical development of these relationships is not included here. Interested read-
ers may refer to any traffic flow theory book for a more detailed treatment of the topic.

A queue is formed when arrivals wait for a service or an opportunity, such as the 
arrival of an accepted gap in a main traffic stream, the collection of tolls at a tollbooth or 
of parking fees at a parking garage, and so forth. The service can be provided in a single 
channel or in several channels. Proper analysis of the effects of such a queue can be car-
ried out only if the queue is fully specified. This requires that the following characteris-
tics of the queue be given: (1) the characteristic distribution of arrivals, such as uniform, 
Poisson, and so on; (2) the method of service, such as first come–first served, random, 
and priority; (3) the characteristic of the queue length, that is, whether it is finite or 
infinite; (4) the distribution of service times; and (5) the channel layout, that is, whether 
there are single or multiple channels and, in the case of multiple channels, whether they 
are in series or parallel. Several methods for the classification of queues based on the 
above characteristics have been used—some of which are discussed below.

Arrival Distribution

The arrivals can be described as either a deterministic distribution or a random distribu-
tion. Light-to-medium traffic is usually described by a Poisson distribution, and this is 
generally used in queuing theories related to traffic flow.

Service Method

Queues also can be classified by the method used in servicing the arrivals. These include first 
come–first served where units are served in order of their arrivals, and last in–first served, 
where the service is reversed to the order of arrival. The service method can also be based 
on priority, where arrivals are directed to specific queues of appropriate priority levels—for 
example, giving priority to buses. Queues are then serviced in order of their priority level.

Characteristics of the Queue Length

The maximum length of the queue, that is, the maximum number of units in the queue, 
is specified, in which case the queue is a finite or truncated queue, or else there may be 
no restriction on the length of the queue. Finite queues are sometimes necessary when 
the waiting area is limited.

Service Distribution

The Poisson and negative exponential distributions have been used as the random 
distributions.

Number of Channels

The number of channels usually corresponds to the number of waiting lines and is there-
fore used to classify queues, for example, as a single-channel or multichannel queue.
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Oversaturated and Undersaturated Queues

Oversaturated queues are those in which the arrival rate is greater than the service rate, 
and undersaturated queues are those in which the arrival rate is less than the service rate. 
The length of an undersaturated queue may vary but will reach a steady state with the 
arrival of units. The length of an oversaturated queue, however, will never reach a steady 
state but will continue to increase with the arrival of units.

Single-Channel, Undersaturated, Infinite Queues

Figure 6.16 is a schematic of a single-channel queue in which the rate of arrival is q veh/h 
and the service rate is Q veh/h. For an undersaturated queue, Q > q. Assuming that both 
the rate of arrivals and the rate of service are random, the following relationships can 
be developed:

	 1.	 Probability of n units in the system, P(n):

	 P(n)  a q

Q
b

n

a1
q

Q
b 	 (6.69)

where n is the number of units in the system, including the unit being serviced.
	 2.	 The expected number of units in the system, E(n):

	 E(n) 
q

Q  q
	 (6.70)

	 3.	 The expected number of units waiting to be served (that is, the mean queue length) 
in the system, E(m):

	 E(m) 
q2

Q(Q  q)
	 (6.71)

Note that E(m) is not exactly equal to E(n) − 1, the reason being that there is a 
definite probability of zero units being in the system, P(0).

	 4.	 Average waiting time in the queue, E(w):

	 E(w) 
q

Q(Q  q)
	 (6.72)

	 5.	 Average waiting time of an arrival, including queue and service, E(v):

	 E(v) 
1

Q  q
	 (6.73)

Figure 6.16  A Single-Channel Queue
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	 6.	 Probability of spending time t or less in the system:

	 P(v  t)  1  e(1
q

Q)qt	 (6.74)

	 7.	 Probability of waiting for time t or less in the queue:

	 P(w  t)  1 
q

Q
 e(1

q

Q)qt	 (6.75)

	 8.	 Probability of more than N vehicles being in the system, that is, P(n > N):

	 P(n  N)  a q

Q
 b

N1

	 (6.76)

Equation 6.70 can be used to produce a graph of the relationship between the expected 
number of units in the system, E(n), and the ratio of the rate of arrival to the rate of ser-
vice, p = q/Q. Figure 6.17 is such a representation for different values of p. It should be 
noted that as this ratio tends to 1 (that is, approaching saturation), the expected number 
of vehicles in the system tends to infinity. This shows that q/Q, which is usually referred to 
as the traffic intensity, is an important factor in the queuing process. The figure also indi-
cates that queuing is of no significance when p is less than 0.5, but at values of 0.75 and 
above, the average queue lengths tend to increase rapidly. Figure 6.18 is also a graph of 
the probability of n units being in the system versus q/Q.

Single-Channel, Undersaturated, Finite Queues

In the case of a finite queue, the maximum number of units in the system is specified. 
Let this number be N. Let the rate of arrival be q and the service rate be Q. If it is also 
assumed that both the rate of arrival and the rate of service are random, the following 
relationships can be developed for the finite queue.

Figure 6.17  Expected Number of Vehicles in the System E (n) versus Traffic Intensity (r)
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Figure 6.18  Probability of n Vehicles Being in the System for Different Traffic Intensities (r)

Example 6.11  �Application of the Single-Channel, Undersaturated, Infinite Queue Theory to a Tollbooth 
Operation

On a given day, 425 veh/h arrive at a tollbooth located at the end of an off-ramp of a 
rural expressway. If the vehicles can be serviced by only a single channel at the service 
rate of 625 veh/h, determine (a) the percentage of time the operator of the tollbooth 
will be free, (b) the average number of vehicles in the system, and (c) the average wait-
ing time for the vehicles that wait. (Assume Poisson arrival and negative exponential 
service time.)

Solution:
	a.	� q = 425 and Q = 625. For the operator to be free, the number of vehicles in the 

system must be zero. From Eq. 6.69,

 P(0)  1 
q

Q
  1 

425
625

  0.32

The operator will be free 32 percent of the time.
	b.	 From Eq. 6.70,

 E(n) 
425

625  425

  2

	c.	 From Eq. 6.73,

 E(v) 
1

625  425
 0.005 h

  18.0 sec
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	 1.	 Probability of n units in the system:

	 P(n) 
1  r

1  rN1
 rn	 (6.77)

where p = q/Q.
	 2.	 The expected number of units in the system:

	 E(n) 
r

1  r
 
1  (N  1)rN  NrN1

1  rN1
	 (6.78)

Example 6.12  �Application of the Single-Channel, Undersaturated, Finite Queue Theory to an 
Expressway Ramp

The number of vehicles that can enter the on ramp of an expressway is controlled by 
a metering system which allows a maximum of 10 vehicles to be on the ramp at any 
one time. If the vehicles can enter the expressway at a rate of 500 veh/h and the rate of 
arrival of vehicles at the on-ramp is 400 veh/h during the peak hour, determine (a) the 
probability of 5 cars being on the on-ramp, (b) the percent of time the ramp is full, and 
(c) the expected number of vehicles on the ramp during the peak hour.

Solution:
	a.	� Probability of 5 cars being on the on-ramp:  q = 400, Q = 500, and  
r = (400/500) = 0.8. From Eq. 6.77,

 P(5) 
1  0.8

1  (0.8)11
 (0.8)5

  0.072

	b.	 From Eq. 6.77, the probability of 10 cars being on the ramp is

 P(10) 
1  0.8

1  (0.8)11
 (0.8)10

  0.023

That is, the ramp is full only 2.3 percent of the time.
	c.	 The expected number of vehicles on the ramp is obtained from Eq. 6.78:

E(n) 
0.8

1  0.8
 
1  (11)(0.8)10  10(0.8)11

1  (0.8)11
  2.97

The expected number of vehicles on the ramp is 3.
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6.6 S ummary
One of the most important functions of a traffic engineer is to implement traffic control 
measures that will facilitate the efficient use of existing highway facilities, since extensive 
highway construction is no longer taking place at the rate it once was. Efficient use of 
any highway system entails the flow of the maximum volume of traffic without causing 
excessive delay to the traffic and inconvenience to the motorist. It is therefore essential 
that the traffic engineer understands the basic characteristics of the elements of a traffic 
stream, since these characteristics play an important role in the success or failure of any 
traffic engineering action to achieve an efficient use of the existing highway system.

This chapter has furnished the fundamental theories that are used to determine the 
effect of these characteristics. The definitions of the different elements have been pre-
sented, together with mathematical relationships of these elements. These relationships 
are given in the form of macroscopic models, which consider the traffic stream as a 
whole, and microscopic models, which deal with individual vehicles in the traffic stream. 
Using the appropriate model for a traffic flow will facilitate the computation of any 
change in one or more elements due to a change in another element. An introduction to 
queuing theory is also presented to provide the reader with simple equations that can be 
used to determine delay and queue lengths in simple traffic queuing systems.

Problems
6-1	 Observers stationed at two sections XX and YY, 500 ft apart on a highway, record the 

arrival times of five vehicles as shown in the accompanying table. If the total time of 
observation at XX was 15 sec, determine (a) the time mean speed, (b) the space mean 
speed, and (c) the flow at section XX.

Time of Arrival

Vehicle Section XX Section YY

A T0 T0 + 7.6 sec
B T0 + 3.4 sec T0 + 9.9 sec
C T0 + 7.9 sec T0 + 14.6 sec
D T0 + 12.0 sec T0 + 20.4 sec
E T0 + 14.9 sec T0 + 21.7 sec

6-2	 Data obtained from aerial photography showed six vehicles on a 700 ft-long section of road. 
Traffic data collected at the same time indicated an average time headway of 3.7 sec. Deter-
mine (a) the density on the highway, (b) the flow on the road, and (c) the space mean speed.

6-3	 Two sets of students are collecting traffic data at two sections, xx and yy, of a highway 
1500 ft apart. Observations at xx show that five vehicles passed that section at intervals 
of 3, 4, 3, and 5 sec, respectively. If the speeds of the vehicles were 50, 45, 40, 35, and 
30 mi/h respectively, draw a schematic showing the locations of the vehicles 20 sec after 
the first vehicle passed section xx. Also, determine (a) the time mean speed, (b) the 
space mean speed, and (c) the density on the highway.

6-4	 Determine the space mean speed for the data given in Problem 6-3 using Equation 6.5. 
Compare your answer with that obtained in Problem 6-3 for the space mean speed and 
discuss the results.

6-5	 The following dataset consists of 30 observations of vehicle speed and length taken from 
a 6-ft by 6-ft inductive loop detector during a 60-sec time period. Determine the occu-
pancy, density, and flow rate.
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Vehicle Speed (mi/h) Length (ft)

  1 61 18
  2 66 17
  3 62 19
  4 70 21
  5 65 16
  6 69 26
  7 72 21
  8 66 19
  9 65 20
10 64 20
11 67 25
12 68 70
13 65 35
14 66 20
15 71 65
16 64 24
17 59 23
18 58 22
19 64 65
20 64 30
21 68 24
22 58 21
23 66 56
24 57 21
25 64 20
26 61 50
27 69 19
28 63 23
29 63 17
30 66 18

6-6	 Data from a 6-ft by 6-ft inductive loop detector collected during a 30-sec time period 
indicate that the mean speed of traffic is 50 mi/h among the 16 vehicles counted. Assume 
an average vehicle length of 19 ft. Determine the density and occupancy.

6-7	 The data shown below were obtained by time-lapse photography on a highway. Use 
regression analysis to fit these data to the Greenshields model and determine (a) the 
mean free speed, (b) the jam density, (c) the capacity, and (d) the speed at maximum flow.

Speed (mi/h) Density (veh/mi)

14.2 85
24.1 70
30.3 55
40.1 41
50.6 20
55.0 15

6-8	 Under what traffic conditions will you be able to use the Greenshields model but not the 
Greenberg model? Give the reason for your answer.

6-9	 In a freeway traffic stream, the capacity flow was observed to be 2200 veh/h/ln, and the 
jam density at this location had been observed to be 125 veh/ln/mi. If the traffic stream 
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is modeled using Greenberg’s model, determine the optimum speed and optimum den-
sity. If the traffic stream is modeled using Greenshields’ model, determine the free flow 
speed, optimum density, and optimum speed.

6-10	 The table below shows data on speeds and corresponding densities on a section of a rural 
collector road. If it can be assumed that the traffic flow characteristics can be described 
by the Greenberg model, develop an appropriate relationship between the flow and 
density. Also determine the capacity of this section of the road.

Speed (mi/h) Density (veh/mi) Speed (mi/h) Density (veh/mi)

58.8 21 35.1 48
48.8 31 30.8 53
41.4 38 29.3 55
39.1 41 26.5 63
36.7 44 24.3 68

6-11	 Researchers have used analogies between the flow of fluids and the movement of vehicu-
lar traffic to develop mathematical algorithms describing the relationship among traffic 
flow elements. Discuss in one or two paragraphs the main deficiencies in this approach.

6-12	 Assuming that the expression:

us  uf e
k/kj

can be used to describe the speed-density relationship of a highway, determine the capacity 
of the highway from the data below using regression analysis.

k (veh/mi) us (mi/h)

43 38.4
50 33.8
  8 53.2
31 42.3

Under what flow conditions is the above model valid?
6-13	 Results of traffic flow studies on a highway indicate that the flow-density relationship 

can be described by the expression:

q  uf k 
uf

kj

 k2

If speed and density observations give the data shown below, develop an appropriate 
expression for speed versus density for this highway, and determine the density at which 
the maximum volume will occur as well as the value of the maximum volume. Also, plot 
speed versus density and volume versus speed for both the expression developed and the 
data shown. Comment on the differences between the two sets of curves.

Speed (mi/h) Density (veh/mi)

55 18
52 25
43 41
38 58
26 71
19 88
17 99
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6-14	 Traffic on the eastbound approach of a signalized intersection is traveling at 35 mi/h, 
with a density of 46 veh/mi/ln. The duration of the red signal indication for this approach 
is 30 sec. If the saturation flow is 1900 veh/h/ln with a density of 52 veh/mi/ln, and the jam 
density is 125 veh/mi/ln, determine the following:

	 (i)	 The length of the queue at the end of the red phase
	(ii)	 The maximum queue length
	(iii)	 The time it takes for the queue to dissipate after the end of the red indication.

6-15	 A developer wants to provide access to a new building from a driveway placed 1000 ft 
upstream of a busy intersection. He is concerned that queues developing during the red 
phase of the signal at the intersection will block access. If the speed on the approach 
averages 35 mi/h, the density is 50 veh/mi, and the red phase is 20 sec, determine if the 
driveway will be affected. Assume that the traffic flow has a jam density of 110 veh/mi 
and can be described by the Greenshields model.

6-16	 Studies have shown that the traffic flow on a two-lane road adjacent to a school can be 
described by the Greenshields model. A length of 0.5 mi adjacent to a school is described 
as a school zone (see Figure 6.19) and operates for a period of 30 min just before the start 
of school and just after the close of school. The posted speed limit for the school zone 
during its operation is 15 mph. Data collected at the site when the school zone is not in 
operation show that the jam density and mean free speed for each lane are 125 veh/mi 
and 57 mph. If the demand flow on the highway at the times of operation of the school 
zone is 90% of the capacity of the highway, determine:

	 (i)	 The speeds of the shock waves created by the operation of the school zone
	(ii)	� The number of vehicles affected by the school zone during this 30-minute operation

6-17	 Briefly describe the different shock waves that can be formed and the traffic conditions 
that will result in each of these shock waves.

6-18	 Traffic flow on a three-lane (one direction) freeway can be described by the Green-
shields model. One lane of the three lanes on a section of this freeway will have to be 
closed to undertake an emergency bridge repair that is expected to take 2 hours. It is 
estimated that the capacity at the work zone will be reduced by 30 percent of that of 
the section just upstream of the work zone. The mean free flow speed of the highway is 
55 mi/h and the jam density is 135 veh/mi/ln. If it is estimated that the demand flow on 
the highway during the emergency repairs is 90 percent of the capacity, using the deter-
ministic approach, determine:

	 (i)	 The maximum queue length that will be formed
	(ii)	 The total delay
	(iii)	 The number of vehicles that will be affected by the incident
	(iv)	 The average individual delay

Figure 6.19  Layout of School Zone for Problem 6-16
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6-19	 Repeat Problem 6-18 for the expected repair periods of 1 h, 1.5 h, 2.5 h, 2.75 h, and 3 h. 
Plot a graph of average individual delay versus the repair period and use this graph to 
discuss the effect of the expected repair time on the average delay.

6-20	 Repeat Problem 6-18 for the expected demand flows of 70 percent, 75 percent, 80 percent, 
and 85 percent of the capacity of the highway. Plot a graph of average individual delay vs 
the expected demand flow and use this graph to discuss the effect of the expected demand 
flow on the average delay.

6-21	 Traffic flow on a section of a two-lane highway can be described by the Greenshields 
model, with a mean free speed of 55 mph and a jam density of 145 veh/mi/ln. At the 
time when the flow was 90 percent of the capacity of the highway, a large dump truck 
loaded with heavy industrial machinery from an adjacent construction site joins the traf-
fic stream and travels at a speed of 15 mi/h for a length of 3.5 mi along the upgrade before 
turning off onto a dump site. Due to the relatively high flow in the opposite direction, it 
is impossible for any car to pass the truck. Determine how many vehicles will be in the 
platoon behind the truck by the time the truck leaves the highway.

6-22	 Briefly discuss the phenomenon of gap acceptance with respect to merging and weaving 
maneuvers in traffic streams.

6-23	 The table below gives data on accepted and rejected gaps of vehicles on the minor road 
of an unsignalized intersection. If the arrival of major road vehicles can be described 
by the Poisson distribution, and the peak hour volume is 1100 veh/h, determine the 
expected number of accepted gaps that will be available for minor road vehicles during 
the peak hour.

Gap (t) (s) Number of Rejected Gaps > t Number of Accepted Gaps < t

1.5 92     3
2.5 52   18
3.5 30   35
4.5 10   62
5.5   2 100

6-24	 Using appropriate diagrams, describe the resultant effect of a sudden reduction of the 
capacity (bottleneck) on a highway both upstream and downstream of the bottleneck.

6-25	 The capacity of a highway is suddenly reduced to 50 percent of its normal capacity due to 
closure of certain lanes in a work zone. If the Greenshields model describes the relation-
ship between speed and density on the highway, the jam density of the highway is 112 veh/
mi, and the mean free speed is 68 mi/h, determine by what percentage the space mean 
speed at the vicinity of the work zone will be reduced if the flow upstream is 70 percent 
of the capacity of the highway.

6-26	 The arrival times of vehicles at the ticket gate of a sports stadium may be assumed to be 
Poisson with a mean of 30 veh/h. It takes an average of 1.5 min for the necessary tickets 
to be bought for occupants of each car.

(a)	 �What is the expected length of queue at the ticket gate, not including the vehicle 
being served?

(b)	 �What is the probability that there are no more than 5 cars at the gate, including the 
vehicle being served?

(c)	 What will be the average waiting time of a vehicle?

6-27	 An expressway off-ramp consisting of a single lane leads directly to a tollbooth. The rate 
of arrival of vehicles at the expressway can be considered to be Poisson with a mean of 

304 Part 2 Traffic Operations

31020_ch06_hr_253-306.indd   304 9/14/18   4:57 PM



45 veh/h, and the rate of service to vehicles can be assumed to be exponentially distri
buted with a mean of 1 min.

(a)	 �What is the average number of vehicles waiting to be served at the booth (that is, the 
number of vehicles in queue, not including the vehicle being served)?

(b)	 �What is the length of the ramp required to provide storage for all exiting vehicles 
90 percent of the time? Assume the average length of a vehicle is 18 ft and that there 
is an average space of 10 ft between consecutive vehicles waiting to be served.

(c)	 �What is the average waiting time a driver waits before being served at the tollbooth 
(that is, the average waiting time in the queue)?
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