3.1 Light, Cosmic Rays, Neutrinos, and Gravitational Waves ## PRE-LECTURE READING 3.1 - Astronomy Today, 8th Edition (Chaisson & McMillan) - Astronomy Today, 7th Edition (Chaisson & McMillan) - Astronomy Today, 6th Edition (Chaisson & McMillan) ## VIDEO LECTURE • Light, Cosmic Rays, Neutrinos, Gravitational Waves¹ (6:49) ## SUPPLEMENTARY NOTES #### Information from the Universe #### Waves - Light (electromagnetic waves) - See Light². - The vast majority of the information that we receive from the universe we receive from light. - Gravitational waves - See Gravitational Waves³. - Waves in the space-time continuum - Not yet detected, but will probably be detected this decade - We will return to this topic in Astronomy 102. #### Particles - Cosmic rays - See Cosmic Rays⁴. - High-speed, high-energy particles that produce showers of other particles when they strike our atmosphere - Neutrinos ¹http://www.youtube.com/watch?v=kkGStNAAd_g&feature=youtu.be ²http://en.wikipedia.org/wiki/Light $^{^3} http://en.wikipedia.org/wiki/Gravitational_wave$ ⁴http://en.wikipedia.org/wiki/Cosmic_ray - See Neutrinos⁵. - Very-weakly-interacting, very-low-mass particles that mostly pass through Earth - Roughly 30 trillion pass through your skull every second. - A very small fraction can be detected. - We will return to this topic in Astronomy 102. ⁵http://en.wikipedia.org/wiki/Neutrinos