3.1 Light, Cosmic Rays, Neutrinos, and Gravitational Waves

PRE-LECTURE READING 3.1

- Astronomy Today, 8th Edition (Chaisson & McMillan)
- Astronomy Today, 7th Edition (Chaisson & McMillan)
- Astronomy Today, 6th Edition (Chaisson & McMillan)

VIDEO LECTURE

• Light, Cosmic Rays, Neutrinos, Gravitational Waves¹ (6:49)

SUPPLEMENTARY NOTES

Information from the Universe

Waves

- Light (electromagnetic waves)
 - See Light².
 - The vast majority of the information that we receive from the universe we receive from light.
- Gravitational waves
 - See Gravitational Waves³.
 - Waves in the space-time continuum
 - Not yet detected, but will probably be detected this decade
 - We will return to this topic in Astronomy 102.

Particles

- Cosmic rays
 - See Cosmic Rays⁴.
 - High-speed, high-energy particles that produce showers of other particles when they strike our atmosphere
- Neutrinos

¹http://www.youtube.com/watch?v=kkGStNAAd_g&feature=youtu.be

²http://en.wikipedia.org/wiki/Light

 $^{^3} http://en.wikipedia.org/wiki/Gravitational_wave$

⁴http://en.wikipedia.org/wiki/Cosmic_ray

- See Neutrinos⁵.
- Very-weakly-interacting, very-low-mass particles that mostly pass through Earth
- Roughly 30 trillion pass through your skull every second.
- A very small fraction can be detected.
- We will return to this topic in Astronomy 102.

⁵http://en.wikipedia.org/wiki/Neutrinos