THE COMMON-ION EFFECT AND BUFFERS

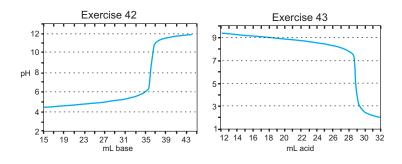
- 1. What is a common ion and what is the common-ion effect?
- 2. Why can the dissociation of a weak base be ignored when calculating the pH of a solution that contains both a weak base and a strong base?
- 3. What is a buffer and how does it function?
- 4. Explain why the terms *appreciable* and *comparable* appear in the definition of a buffer.
- 5. Why is a solution that is 1.4 mM HF and 6.4 mM KF not a good buffer?
- 6. Why is a solution that is 1.3 M HF and 1.3 mM KF not a good buffer?
- **7.** Explain why a solution of a strong acid and its conjugate base is not a buffer. Use a solution of HCl and KCl as an example.
- 8. Explain why a solution that is prepared by dissolving 0.1 mol of each of KH_2PO_4 and K_3PO_4 in 1 L of water is not a buffered solution.
- 9. Use Appendix C to determine the best acid/base pair to prepare buffers at the following pH's:

a)
$$pH = 1.5$$
 b) $pH = 7.0$ **c)** $pH = 12.0$

- **10.** Select an acid-base pair from Appendix C that could be used to buffer a solution at each of the following pH's:
- a) pH = 3.5 b) pH = 8.0 c) pH = 10.6
- **11.** What is the pH of a solution that is 0.16 M NH_3 and 0.43 M NH_4 Cl?
- **12.** What is the pH of a solution that is $0.21 \text{ M K}_2\text{HPO}_4$ and $0.096 \text{ M K}_3\text{PO}_4$?
- **13.** What is the pH of a solution made by dissolving 7.6 g KNO₂ to 750 mL of 0.11 M HNO₂?
- 14. What is the pH of a solution made by dissolving 8.5 g of K_2CO_3 and 6.9 g KHCO₃ in 500 mL of water?
- **15.** How many grams of potassium acetate must be added to 2.5 L of 0.250 M acetic acid to prepare a pH = 4.26 buffer?
- 16. How many grams of ammonium chloride must be added to 0.75 L of 1.2 M ammonia to prepare a pH = 10.18 buffer?
- **17.** How many milliliters of 6.0 M NaOH must be added to 0.50 L of 0.20 M HNO₂ to prepare a pH = 3.86 buffer?
- **18.** How many milliliters of 3.5 M HCl must be added to 3.8 L of 0.18 M K₂HPO₄ to prepare a pH = 7.42 buffer?

EQUILIBRIUM CONSTANTS FOR ACID BASE REACTIONS

- **19.** Use the data in Appendix C to determine the equilibrium constants for the following reactions:
 - **a)** $NH_3(aq) + HCN(aq) NH_4^{1+} + CN^{1-}$
 - **b)** $S^{2-} + HCN(aq) \rightleftharpoons HS^{1-} + CN^{1-}$
 - c) $F^{1-} + HCN(aq) \rightleftharpoons HF(aq) + CN^{1-}$
- **20.** Use the data in Appendix C to determine the equilibrium constants for the following reactions:
 - a) $NH_3(aq) + H_3O^{1+} \rightleftharpoons NH_4^{1+} + H_2O$
 - b) $F^{1-} + H_2O \rightleftharpoons HF(aq) + OH^{1-}$
 - c) $HSO_3^{1-} + HS^{1-} \Longrightarrow H_2S(aq) + SO_3^{2-}$


MIXING PROBLEMS

- **21**. What is $[SO_3^{2-}]$ in a solution prepared by mixing 25.0 mL of 0.100 M H₂CO₃ and 25.0 mL of 0.100 M K₂SO₃?
- 22. What is [HOCl] in a solution prepared by mixing 50.0 mL of 0.160 M KOCl and 50.0 mL of 0.160 M NH₄Cl?
- **23.** What is [F¹⁻] in a solution prepared by mixing 25 mL of 0.16 M HF and 42 mL of 0.086 M KCN?
- **24.** What is [NH₄¹⁺] prepared by mixing 75 mL of 0.34 M ammonia and 85 mL of 0.18 M acetic acid?
- **25.** What is the pH of a solution made by mixing 5.0 mL of 1.2 M HCl and 3.0 mL of 0.88 M HBr?
- 26. What is the pH of a solution prepared by mixing 39 mL of 0.074 M Ba(OH)₂ and 57 mL of 0.11 M KOH?
- 27. What is the pH of a solution prepared by mixing 5.00 mL of 1.20 M HCl and 4.60 mL of 0.840 M NaOH?
- 28. What is the pH of a solution prepared by mixing 38.64 mL of 0.8862 M HCl and 53.66 mL of 0.7500 M NaOH?

- **29.** Calculate the pH change that results when 10. mL of 3.0 M NaOH is added to 500. mL of each of the following solutions:
 - **a)** pure water **b)** $0.10 \text{ M CH}_3\text{COO}^{1-}$ **c)** $0.10 \text{ M CH}_3\text{COOH}$
 - d) a solution that is 0.10 M in each CH₃COO¹⁻ and CH₃COOH
- 30. Calculate the pH change that results when 10. mL of 3.0 M HCl is added to 500. mL of each of the solutions in Ex 29.
- 31. Calculate the pH change that results when 10. mL of 6.0 M HCl is added to 750. mL of each of the following solutions:
 - **a)** pure water **b)** $0.10 \text{ M NH}_4\text{Cl}$ **c)** 0.10 M NH_3
 - d) a solution that is 0.10 M in each NH_4^{1+} and NH_3
- 32. Calculate the pH change that results when 10. mL of 6.0 M NaOH is added to each of the solutions described in Ex 31.

TITRATIONS

- **33.** Sketch the titration curve for the titration of 50 mL of 0.1 M HA ($K_a = 10^{-7}$) with 0.1 M NaOH. What are the initial pH, the pH at the midpoint of the titration, and the pH at the equivalence point?
- **34.** Sketch the titration curve for the titration of 50 mL of 0.1 M A¹⁻ ($K_b = 10^{-7}$) with 0.1 M HCl. What are the initial pH, the pH at the midpoint of the titration, and the pH at the equivalence point?
- **35.** What is the pH at each equivalence point in the titration of 25 mL of $0.080 \text{ M H}_3\text{PO}_4$ with 0.065 M NaOH?
- **36.** What is the pH's at each equivalence points in the titration of 25 mL of $0.080 \text{ M H}_2\text{CO}_3$ with 0.10 M NaOH?
- 37. Consider the titration of 35.0 mL of 0.122 M ammonia with 0.0774 M HCl.
 - a) How many mL of HCl are required to reach the equivalence point?
 - **b)** What is the pH at the equivalence point? What indicator should be used for this titration?
 - c) What is the pH of the solution after addition of 15.0 mL of acid?
 - d) What is the pH of the solution after the addition of 65.0 mL of acid?
- **38.** The CO₂ we breathe reacts with water in our blood to form the weak acid H₂CO₃. What mole ratio of H₂CO₃/HCO₃¹⁻ is required to obtain a pH of 7.40, the pH of blood? Use $K_a = 4.4 \times 10^{-8}$ for H₂CO₃.
- 39. 50.0 ml of 0.10 M HCl are required to titrate 10.0 ml of ammonia window cleaner to the end point.
 - **a)** What is the concentration of ammonia in the window cleaner?
 - **b)** What is the pH of the window cleaner if $K_b(NH_3) = 1.8 \times 10^{-5}$?
 - c) What is the pH at the equivalence point of the titration?
 - d) Which indicator in Table 7.4 would be the best to indicate the endpoint?
- **40.** 5.182-g of a solid, weak, monoprotic acid is used to make a 100.0 mL solution. 25.00 mL of the resulting acid solution is then titrated with 0.09685 M NaOH. The pH after the addition of 20.00 mL of the base is 5.58, and the endpoint is reached after the addition of 47.92 mL of the base.
 - a) How many moles of acid were present in the 25.00 mL sample?
 - **b)** What is the molar mass of the acid?
 - c) What is the pK_a of the acid?
- **41.** A benzoic acid (C_6H_5COOH) sample was analyzed by dissolving 406.2 mg of the sample in 50 mL of water and titrating it with 0.06642 M NaOH.
 - a) What is the percent purity of the benzoic acid if the titration required 38.62 mL of base?
 - **b)** What is the pK_a of benzoic acid if the pH of the titration was 4.46 after the addition of 25.00 mL of the base?

- **42.** Use the portion of the titration curve for the titration of 50.00 mL of a weak acid with 0.122 M NaOH shown above left to determine the concentration and pK_a of the weak acid.
- **43.** Use the portion of the titration curve for the titration of 20.00 mL of a weak base with 0.143 M HCl shown above right to determine the concentration and pK_b of the weak base.

COMPOSITION FROM pH

44. What are the concentrations of $C_6H_8O_6$, $C_6H_7O_6^{1-}$, and $C_6H_6O_6^{2-}$ in a solution prepared by adjusting a 0.065 M ascorbic acid solution to the following pH's?

a) 3.0 b) 5.0 c) 10.0 d) 12.0

45. What are the concentrations of hydrosulfuric acid and the hydrogen sulfate ion in a solution prepared by adjusting a 0.10 M H₂S acid solution to the following pH's?

a) 5.0 b) 7.0 c) 10.0 d) 13.0

46. To what pH must a 0.15 M ascorbic acid solution be adjusted to obtain the following concentrations?

a) $[C_6H_6O_6^{2-}] = 0.040 \text{ M}$

b) $[C_6H_7O_6^{-1}] = 0.15 \text{ M}$

c)
$$[C_6H_6O_6^{2-}] = 2.2 \times 10^{-10} \text{ M}$$

- 47. To what pH must a 0.10 M H₂S solution be adjusted to obtain the following sulfide ion concentrations?
 - **a)** $[S^{2-}] = 0.085 \text{ M}$

b)
$$[S^{2-}] = 1.0 \times 10^{-14} \text{ M}$$

- **c)** $[HS^{1-}] = 0.10 \text{ M}$
- **48.** NaOH is added to a 0.120 M phosphoric acid solution until the hydrogen phosphate ion concentration is 0.080 M, but the phosphate ion concentration is negligible. What is the pH of the solution?
- **49.** HCl is added to a 0.140 M phosphate ion solution until the dihydrogen phosphate ion concentration is 0.075 M, but the hydrogen phosphate ion concentration is negligible. What is the pH?

MISCELLANEOUS PROBLEMS

- **50.** A tablet of aspirin ($HC_9H_7O_4$) is required to contain 325 mg of aspirin. The quality is analyzed by dissolving one tablet in 50 ml H₂O, then titrating the solution with 0.1000 M NaOH. If 16.05 ml of the NaOH solution are required to reach the endpoint, how many mg of aspirin are actually in the tested sample tablet? Does this product pass your inspection?
- **51.** In molecular biology, phosphate buffers are normally utilized to maintain a physiological pH of 6.8 to 7.4. However for RNA isolation more acidic conditions (pH around 5.8) are often required for optimal enzymatic function.
 - a) Explain why an acetate buffer is preferred over a phosphate buffer for RNA isolation.
 - **b)** How many grams of sodium acetate should be dissolved in 500. mL of 0.112 M acetic acid to prepare a pH = 5.8 buffer?

52. Recall from Chapter 2, that the colligative concentration is extremely important in a cell. Thus, both the pH and the concentration of all components are important considerations when preparing a buffer. The concentration of all particles in solution is often termed the *osmolality* or (moles of particles)·kg solvent⁻¹. Using NaH₂PO₄ and Na₂HPO₄ and water, describe how to prepare a buffer with a pH = 7.21 and an osmolality of 300. mmol·kg⁻¹.