¹⁹⁷Au

d)

THE NUCLEUS

- **1.** Indicate the number of neutrons in each of the following nuclei.
- **a)** ${}^{10}\text{Be}$ **b)** ${}^{100}\text{Mo}$ **c)** ${}^{75}\text{As}$
- 2. Indicate the number of neutrons in each of the following nuclei.
 a) ¹⁹²Hg
 b) ¹¹⁵Sn
 c) ³⁴S
 d) ⁸⁵Rb
- **3.** Write the symbol, including atomic number and mass, for each of the following isotopes.
 - **a)** Z = 26, A = 56 **b)** $A = 74, N_n = 40$ **c)** $Z = 54, N_n = 78$
- 4. Write the symbol, including atomic number and mass, for each of the following isotopes. a) Z = 46, $N_n = 64$ b) A = 110, Z = 48 c) A = 212, $N_n = 129$
- **5.** There are three naturally occurring isotopes of silicon. Use the data below to determine the atomic mass of silicon.

	5 0	1	
	Mass (amu)		Abundance
²⁸ Si	27.97693		92.21%
²⁹ Si	28.97649		4.70%
³⁰ Si	29.97376		3.09%

- **6.** There are two naturally occurring isotopes of lithium: ⁶Li and ⁷Li, with atomic masses of 6.01512 and 7.01600, respectively. If the atomic mass of lithium is 6.939, what is the natural abundance of ⁶Li?
- 7. The natural abundance of deuterium is 0.015%. How many deuterium nuclei are present in 100. mL of water?

NUCLEAR STABILITY

- 8. What is meant by the term 'band of stability'?
- **9.** Determine the mass defects (in kg·mol⁻¹) for the following nuclei.
 - **a)** 79 Br (Mass = 78.9183 amu)
 - **b)** 99 Ru (Mass = 98.9061 amu)
- **10.** Determine the mass defects (in kg·mol⁻¹) for the following nuclei.
 - **a)** 142 Ce (Mass = 141.9090 amu)
 - **b)** 40 Ca (Mass = 39.96259 amu)
- 11. What are the binding energies and binding energies per nucleon for each of the nuclei in Exercise 9?
- 12. What are the binding energies and binding energies per nucleon for each of the nuclei in Exercise 10?

d) ²⁵Al

- **13.** Which nucleus in Exercise 11 is thermodynamically more stable?
- 14. Which nucleus in Exercise 12 is thermodynamically more stable?

NUCLEAR REACTIONS AND RADIOACTIVITY

- **15.** Predict the mode of decay for each of the following:
 - **a)** ^{233}U **b)** ^{197}Pb **c)** ^{231}Ac **d)** ^{225}Th
- **16.** Predict the mode of decay for each of the following:

a) ¹¹⁰Rh b) ⁹⁸Pd c) ⁶He

- **17.** Identify X in each of the following nuclear reactions:
 - a) $^{144}Nd \rightarrow ^{140}Ce + X$
 - **b)** $^{238}U + n \rightarrow 3n + ^{81}Ge + X$
 - c) ${}^{16}O + \alpha \rightarrow X$
- **18.** Identify X in each of the following nuclear reactions.
 - **a)** 69 Ga + n \rightarrow X
 - **b)** $^{235}\text{U} + n \rightarrow 2n + ^{100}\text{Mo} + X$
 - c) ${}^{35}Cl + p \rightarrow \alpha + X$

- **19.** Write complete nuclear reactions for the following:
 - a) Potassium-40 undergoes beta decay.
 - **b)** Chlorine-34 emits a positron.
 - c) Arsenic-73 undergoes electron capture.
 - d) Bismuth-214 decays to thallium-210.
- **20.** Write complete nuclear reactions for the following.
 - a) Thorium-229 undergoes alpha decay.
 - **b)** Gold-198 emits a beta particle.
 - **c)** Antimony-118 emits a positron.
 - d) Cadmium-115 decays to indium-115.
- **21.** Radon-222 undergoes the following decay sequence to a stable nucleus: α , α , β , β , α , β , β , α . What is the identity of the resulting nucleus?
- **22.** Uranium-238 undergoes the following decay sequence: α, β, β, α, α, α, α, α, β, β, α, β. What is the identity of the last nucleus?

KINETICS OF RADIOACTIVITY

- **23.** ²³⁹Pu is a very toxic material used in nuclear weapons that has a half-life of 2.44x10⁴ years. How long will a sample of Pu have to be stored before only 1% of the original sample remains?
- **24.** ¹³¹I is a β -emitter that is used to treat thyroid disorders. If its half-life is 8.070 days, how many days are required to rid the body of 95% of any ingested ¹³¹I?
- **25.** A 12.30-mg sample of ⁴⁷Ca is found to contain 3.24 mg of ⁴⁷Sc after 2.00 days, what is the half-life of ⁴⁷Ca in days? What type of decay does ⁴⁷Ca undergo?
- **26.** A 4.56-mg sample of ²²⁸Th, an α emitter, contains 2.58 mg of ²²⁸Th after 575 days. What is the half-life of ²²⁸Th in years?
- 27. The Shroud of Turin is a long linen cloth that bears an image of a bearded, longhaired man, with numerous lacerations over his body. Tradition, dating back to the fourteenth century, has it that the fabric is the burial shroud of Jesus Christ. In 1988, its age was determined by carbon dating. If a fiber of the shroud had a ¹⁴C disintegration rate of 14.0 d·min⁻¹·g⁻¹, how old was the cloth. What conclusion can be drawn about the authenticity of the claim that it is the burial cloth of Jesus Christ? (The rate of decay of living organisms is 15.3 d·min⁻¹·g⁻¹, and the half-life of ¹⁴C is 5730 years.)
- **28.** The wood on an Egyptian coffin had a ¹⁴C disintegration rate of 11.7 d·min⁻¹·g⁻¹, how old is the coffin? (The rate of decay of living organisms is 15.3 d·min⁻¹·g⁻¹, and the half-life of ¹⁴C is 5730 years.)
- **29.** How old is a rock sample from a meteor if it contains 73.2 mg of 238 U and 20.2 mg of 206 Pb? Assume that all of the 206 Pb was formed from 238 U. The half-life of the 238 U $\rightarrow {}^{206}$ Pb process is 4.5×10^9 years.
- **30.** Geological times can also be estimated by Argon dating. ⁴⁰K undergoes electron capture to ⁴⁰Ar with a half-life of 1.28x10⁹ years. Estimate the age of a moon rock sample if its ⁴⁰Ar/⁴⁰K mass ratio is 10.4.

NUCLEAR RADIATION

- **31.** List beta particles, gamma rays and alpha particles in order of increasing penetrating power.
- **32.** Why are houses checked for radon? How does radon get into a home?

NUCLEAR FISSION AND NUCLEAR FUSION

Use the following atomic masses and those in Table 11.1 for Exercises 33 and 34.

⁴ He	4.0026	13 C	13.0034	31 _P	30.9737
16 _O	15.9949	²⁴ Mg	23.9850	226 _{Ra}	226.0254
68 _{Zn}	67.9248	72 _{Ge}	71.9221	238 _U	238.0508
230 _{Th}	230.0331	234 _{Th}	234.0436		
239Pu	239.0522	242 _{Cm}	242.0588		

33. Determine the mass defect in kilograms of each of the following reactions.

	a)	$2^{12}C \rightarrow {}^{24}Mg$	b)	$^{238}U \rightarrow ^{234}Th + \alpha$	
	c)	$\beta^+ + \beta^- \rightarrow \gamma$	d)	239 Pu + 4 He $\rightarrow ^{242}$ Cm + n	
34.	4. Determine the mass defect in kilograms of each of the following reactions.				
	a)	230 Th $\rightarrow ^{226}$ Ra + α	b)	$2^{16}\text{O} \rightarrow {}^{31}\text{P} + {}^{1}\text{H}$	

c) ${}^{13}C + {}^{4}He \rightarrow {}^{16}O + n$ d) ${}^{68}Zn + {}^{4}He \rightarrow {}^{72}Ge$

35. What is the energy change of each reaction listed in Exercise 33?

36. What is the energy change of each reaction listed in Exercise 34?

37. Classify each reaction in Exercise 33 as fission, fusion, decay or annihilation. If it is a decay, indicate what kind.

38. Classify each reaction in Exercise 34 as fission, fusion, decay or annihilation. If it is a decay, indicate what kind.

39. What is a chain reaction? How is the chain reaction in a nuclear power plant controlled?

40. Why is controlled fusion so difficult to achieve? Describe the two methods that are being used to produce controlled fusion